Exploring some concurrencies in the tetrahedron

Consider the corresponding analogues of perpendicular bisectors, angle bisectors, medians and altitudes of a triangle for a tetrahedron, and investigate which of these are also concurrent for a tetrahedron. If true, prove it; if not, provide a counter-example.

Let us start with following useful assumption (stated without proof) for 3D:
Three (non-parallel) planes meet in a point. (It is easy to see this in a rectangular room where two walls and the ceiling meet perpendicularly in a point.)

Definition 1: The perpendicular edge bisector is the generalisation to 3D of the concept of a perpendicular bisector. For example, the perpendicular edge bisector of $A B$ is the plane through the midpoint of $A B$, and perpendicular to it. Or equivalently, it is the set of points equidistant from A and B.

Theorem 1: The six perpendicular edge bisectors of a
 tetrahedron all meet at the circumcentre.

Proof: Let S be the intersection of the three perpendicular edge bisectors of $A B, B C, C D$. Therefore $S A=S B=S C=S D$. Therefore S must lie on all 6 perpendicular edge bisectors, and the sphere, centre S and radius $S A$, goes through all four vertices.

Definition 2: Let a, b, c, d denote the four faces of a tetrahedron $A B C D$. The face angle bisector of $a b$ is the plane through $C D$ bisecting the angle between the faces a, b. It is therefore also the set of points equidistant from a and b.

Theorem 2: The six face angle bisectors of a tetrahedron all meet at the incentre.

Proof: Let I be the intersection of the three face angle bisectors $a b, b c, c d$. Then I is equidistant from all four faces, and is therefore the centre of the insphere touching all four faces.

Definition 3: A median of a tetrahedron is the join of a vertex to the centroid of the opposite face.

Theorem 3: The four medians of a tetrahedron meet at the centre of mass G.

Proof: Let $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ be coordinate vectors of A, B, C, D. Then $\mathbf{e}=\frac{1}{3}(\mathbf{b}+\mathbf{c}+\mathbf{d})$ is the centroid E of $B C D$. Let G be the point $\mathbf{g}=\frac{1}{4}(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d})$.

Then G lies on the median $A E$ because $\mathbf{g}=\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{e}$. Similarly G lies on all four medians.

To verify that G is the centre of mass of the tetrahedron, note that the line containing $B E$ divides triangle $B C D$ into two triangles of equal area. Therefore the plane containing $A B E$ divides the tetrahedron into two sub-tetrahedron of equal volume (they also have the same height). Therefore the centre of mass lies in this plane, and similarly in the plane containing $A C E$, and hence on $A E$. Similarly the centre of mass lies on all the medians, and hence is G.

Definition 4: The altitude of a tetrahedron through A is the line perpendicular to face $B C D$.

In general the four altitudes of a tetrahedron do not meet. It suffices to give a counter-example. Consider Dehn's tetrahedron $A B C D$ inscribed in a cube as shown.

The altitudes through A, D are $A B, C D$ which clearly do not meet.

Bibliography

Zeeman, C. (2005). Three-dimensional theorems for schools. Leicester: The Mathematical Association.

