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CENTROIDS AND SOME CHARACTERIZATIONS OF

PARALLELOGRAMS
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Seongjin Son, Jeong Ki Yang, and Dae Won Yoon

Abstract. For a polygon P , we consider the centroid G0 of the vertices
of P , the centroid G1 of the edges of P and the centroid G2 of the interior
of P , respectively. When P is a triangle, the centroid G0 always coincides
with the centroid G2. For the centroid G1 of a triangle, it was proved
that the centroid G1 of a triangle coincides with the centroid G2 of the
triangle if and only if the triangle is equilateral.

In this paper, we study the relationships between the centroids G0, G1

and G2 of a quadrangle P . As a result, we show that parallelograms are
the only quadrangles which satisfy either G0 = G1 or G0 = G2. Further-
more, we establish a characterization theorem for convex quadrangles
satisfying G1 = G2, and give some examples (convex or concave) which
are not parallelograms but satisfy G1 = G2.

1. Introduction

Let P denote a polygon in the plane R
2. Then we consider the centroid (or

center of mass, or center of gravity, or barycenter) G2 of the interior of P , the
centroid G1 of the edges of P and the centroid G0 of the vertices of P . The
centroid G1 of the edges of P is also called the perimeter centroid of P ([2]).

If P is a triangle, then the centroidG1 coincides with the center of the Spieker
circle, which is the incircle of the triangle formed by connecting midpoint of
each side of the original triangle P ([1, p. 249]).

For a triangle P , we have the following ([11, Theorem 2]).

Proposition 1.1. Let ABC denote a triangle. Then we have:

(1) G0 = G2(= G), where G = (A+B + C)/3.
(2) G1 = G2 if and only if the triangle ABC is equilateral.
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Hence, it is quite natural to ask the following:
Which quadrangles satisfy one of the conditions G0 = G1, G0 = G2 and

G1 = G2?

In this paper, first of all, in Section 3 we answer the above question as
follows.

Theorem A. Let P denote a quadrangle. Then the following are equivalent.

(1) P satisfies G0 = G1.

(2) P satisfies G0 = G2.

(3) P is a parallelogram.

For a quadrangle ABCD, we put as follows:

(1.1) AB = l1, BC = l2, CD = l3, DA = l4.

In order to study the relationships between the centroid G1 and the centroid
G2 of a convex quadrangle, for the intersection point M of the two diagonals
AC and BD we define as follows:

(1.2) △ABM = m1, △BCM = m2, △CDM = m3, △DAM = m4.

The perimeter l and the area m of the convex quadrangle ABCD are respec-
tively given by

(1.3) l = l1 + l2 + l3 + l4

and

(1.4) m = m1 +m2 +m3 +m4.

Next, using the above notations, in Section 4 we establish a characterization
theorem for convex quadrangles satisfying G1 = G2 as follows.

Theorem B. Let P denote a convex quadrangle ABCD. Then the following

are equivalent.

(1) P satisfies G1 = G2.

(2) P satisfies both

(1.5) l(m3 +m4) = m (3(l3 + l4)− l)

and

(1.6) l(m1 +m4) = m (3(l1 + l4)− l) .

Finally, in Section 5 we give some examples of quadrangles which are not
parallelograms but satisfy G1 = G2 as follows.

Example C. There exist quadrangles (convex or concave) which are not par-
allelograms but satisfy G1 = G2.

For further study, we raise a question as follows:

Question D. 1) Which quadrangles satisfy G1 = G2?
2) Which pentagons (or generally n-gons) satisfy G0 = G1 = G2?
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For finding the centroid G2 of all types of convex and concave polygons, we
refer [3]. In [10], mathematical definitions of centroid G2 of planar bounded
domains were given. It was shown that the centroid G0 of the vertices of a
simplex in an n-dimensional space always coincides with the centroid Gn of the
simplex ([11]).

Archimedes discovered and proved the area properties of parabolic sections
and then formulated the centroid of parabolic sections ([12]). Some characteri-
zations of parabolas using these properties were given in [5, 8, 9]. Furthermore,
Archimedes also proved the volume properties of the region surrounded by a
paraboloid of rotation and a plane ([12]). For characterizations of elliptic pa-
raboloid or ellipsoids with respect to these volume properties, we refer [4, 6, 7].

2. Preliminaries

Let us consider four distinct points A,B,C and D in the plane R
2. We say

they determine the quadrangle ABCD if they satisfy the following conditions.

(C1) The union of four successive segments {AB,BC,CD,DA} bounds a
simply connected domain in the plane R

2.
(C2) Three points of them are not collinear.

If P denotes the quadrangle ABCD, then the four points A,B,C and D are
called the vertices of P , the four successive segments the edges of P and the
segments AC and BD the diagonals of P , respectively.

For a quadrangle ABCD, we have the following, where we use the notations
given in (1.1), (1.3) and (1.4).

Proposition 2.1. Let P denote the quadrangle ABCD. Then we have the

following.

(1) The centroid G0 of P is given by

(2.1) G0 =
A+B + C +D

4
.

(2) The centroid G1 of P is given by

(2.2) G1 =
(l4 + l1)A+ (l1 + l2)B + (l2 + l3)C + (l3 + l4)D

2l
.

(3) If m = δ ± β, where δ = △ABC and β = △ACD, then the centroid

G2 of P is given by

(2.3) G2 =
mA+ δB +mC ± βD

3m
,

Proof. It is trivial to prove (1). It is straightforward to prove (2), or see [3].
For (3), we prove only the case m = δ − β. In this case, the vertex D of

P lies in the interior of the triangle ABC. Note that the disjoint union of the
interior of ACD and the interior of quadrangle P becomes the interior of ABC
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excepts a measure zero set. Thus we get the following:

(2.4)
mG2 + δ

(
A+C+D

3

)

m+ δ
=

A+B + C

3
,

which shows that (2.3) holds.
The remaining cases can be treated similarly. This completes the proof of

Proposition 2.1. �

It is trivial to show the following.

Proposition 2.2. The centroids G0, G1 and G2 of a parallelogram P coincide

with the intersection point G of two diagonals of the parallelogram P .

In the proof of Theorem A, we need the following proposition which can be
proved easily.

Proposition 2.3. Let P denote the quadrangle ABCD. Then the diagonals

AC and BD of P are not parallel to each other.

Finally, we give an example which shows the necessity of condition (C1).

Example 2.4. We consider four points A(1, 0), B(1, 1), C(2, 1) and D(0, 0).
Then the centroid G0 of the four points and the centroid G1 of four successive
segments coincide with G0 = G1 = (1, 1/2). But they does not satisfy the
condition (C1).

3. Characterizations of parallelograms

In this section, we prove Theorem A stated in Section 1.
Suppose that a quadrangle ABCD denoted by P satisfies G0 = G1. Then

Proposition 2.1 shows that

(3.1) l(A+B+C+D)=2(l4 + l1)A+2(l1 + l2)B+2(l2 + l3)C+2(l3 + l4)D,

where we use (1.1) and (1.3). By a translation, we may assume that the point
D is the origin. Then (3.1) becomes

(3.2) yB = x(C −A),

where we put

(3.3) x = l2 + l3 − l1 − l4, y = l3 + l4 − l1 − l2.

If y 6= 0, then (3.2) implies that the two diagonalsDB and AC of quadrangle
P are parallel to each other. This contradiction shows that y = 0, and hence
from (3.2) we also have x = 0. It follows from (3.3) that l1 = l3 and l2 = l4.
This completes the proof of (1) ⇒ (3) in Theorem A.

Now, suppose that a quadrangle ABCD denoted by P satisfies G0 = G2.
We, first of all, claim that the quadrangle P is convex. Otherwise, a vertex

(say, A) lies in the interior of the triangle BCD. If we put δ = △ABC and
β = △ACD, then we have m = δ + β. Hence Proposition 2.1 yields that

(3.4) 3(β + δ)(A +B + C +D) = 4(β + δ)A+ 4δB + 4(β + δ)C + 4βD.
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By a translation, we may assume that the point D is the origin. Then (3.4)
becomes

(3.5) (3β − δ)B = (β + δ)(A+ C).

If 3β − δ = 0, then (3.5) shows that A + C = 0 because β + δ > 0. This
shows that A,C and D(= 0) are collinear. This contradiction yields 3β− δ 6= 0

Suppose that 3β − δ > 0. Then (3.5) shows that B is a positive multiple
of A + C, and hence the quadrangle P is a convex quadrangle, which is a
contradiction.

Suppose that 3β − δ < 0. Then it follows from (3.5) that B is a negative
multiple of A+C, and hence the point D(= 0) lies in the interior of the triangle
ABC, which is a contradiction.

The above contradictions all together imply that the quadrangle P is a
convex quadrangle with 3β − δ > 0. Obviously, P satisfies (3.5). We put
E = A+ C. Then, it follows from (3.5) that the vertex B lies on the diagonal
DE of the parallelogram AECD. Hence we get for the intersection point M
of diagonals DE and AC of the parallelogram AECD

(3.6) △ABM = △BCM(=
δ

2
), △CDM = △DAM(=

β

2
),

where we use AM = CM . This shows that

(3.7) △ABD = △BCD(=
m

2
).

Now, we repeat the similar argument as in the above. Then, by letting
γ = △ABD and α = △BCD with m = γ + α, we may prove that

(3.8) △ABC = △ACD(=
m

2
),

which shows that β = δ. Hence it follows from (3.5) that B = A + C. This
completes the proof of (2) ⇒ (3) in Theorem A.

Conversely, both (3) ⇒ (1) and (3) ⇒ (2) follow from Proposition 2.2. This
completes the proof of Theorem A.

4. Quadrangles satisfying G1 = G2

In this section, using the notations in (1.1)-(1.4), we prove Theorem B stated
in Section 1.

We consider a convex quadrangle ABCD denoted by P . Then Proposition
2.1 shows that the centroid G1 of P is given by

(4.1) G1 =
(l4 + l1)A+ (l1 + l2)B + (l2 + l3)C + (l3 + l4)D

2l
.

If we let m = δ + β, where δ = △ABC = m1 + m2 and β = △ACD =
m3 +m4, then by Proposition 2.1 the centroid G2 of P is given by

(4.2) G2 =
mA+ (m1 +m2)B +mC + (m3 +m4)D

3m
.
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By letting γ = △ABD = m1+m4 and α = △BCD = m2+m3 with m = γ+α,
we also get from Proposition 2.1

(4.3) G2 =
(m1 +m4)A+mB + (m2 +m3)C +mD

3m
.

It follows from (4.2) and (4.3) that we always have

(4.4) (m2 +m3)A+ (m1 +m4)C = (m3 +m4)B + (m1 +m4)D.

Now, suppose that the quadrangle P satisfies G1 = G2. By a translation of
P , we may assume that the vertex D is the origin. Then from (4.4) we obtain

(4.5) B =
m2 +m3

m3 +m4
A+

m1 +m4

m3 +m4
C.

Together with the assumption G1 = G2, (4.1) and (4.3) show that

(4.6) B =
2l(m1 +m4)− 3m(l1 + l4)

m (3(l1 + l2)− 2l)
A+

2l(m2 +m3)− 3m(l2 + l3)

m (3(l1 + l2)− 2l)
C.

Since the vectors A(= A −D) and C(= C −D) are linearly independent, the
coefficients of A (resp., C) in (4.5) and (4.6) are equal to each other. Hence,
by adding the coefficients in (4.5) and (4.6), respectively, we obtain

(4.7)
m

m3 +m4
=

l

3(l3 + l4)− l
.

This shows that (1.5) holds.

In order to prove (1.6), we translate the quadrangle P so that the vertex A
is the origin. Then from (4.4) we obtain

(4.8) C =
m3 +m4

m1 +m4
B +

m1 +m2

m1 +m4
D.

Together with the assumption G1 = G2, (4.1) and (4.2) show that

(4.9) C =
2l(m1 +m2)− 3m(l1 + l2)

m (3(l2 + l3)− 2l)
B +

2l(m3 +m4)− 3m(l3 + l4)

m (3(l2 + l3)− 2l)
D.

The same argument as in the above shows that

(4.10)
m

m1 +m4
=

l

3(l1 + l4)− l
,

which implies that (1.6) holds.
This completes the proof of (1) ⇒ (2) in Theorem B.

Conversely, suppose that the quadrangle P satisfies both (1.5) and (1.6).
Then, first note that together with (1.3) and (1.4), (1.5) and (1.6) respectively
imply

(4.11) l(m1 +m2) = m (3(l1 + l2)− l)

and

(4.12) l(m2 +m3) = m (3(l2 + l3)− l) .
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Now, we translate the quadrangle P so that the vertex D is the origin.
Then from (4.4) we see that (4.5) always holds. Using (1.6), (4.11) and (4.12),
it follows from (4.1) that
(4.13)

G1 =
1

6m
((m+m1 +m4)A+ (m+m1 +m2)B + (m+m2 +m3)C) .

Replacing B in (4.13) with that in (4.5), we get

(4.14) G1 =
1

6m(m3 +m4)
(xA + yC),

where we put

(4.15) x = (m3 +m4)(m+m1 +m4) + (m2 +m3)(m+m1 +m2)

and

(4.16) y = (m1 +m4)(m+m1 +m2) + (m3 +m4)(m+m2 +m3).

On the other hands, it follows from (4.3) and (4.5) that

(4.17) G2 =
1

3m(m3 +m4)
(zA+ wC),

where we use

(4.18) z = (m1 +m4)(m3 +m4) +m(m2 +m3)

and

(4.19) w = m(m1 +m4) + (m2 +m3)(m3 +m4).

Finally, it is easy to show that

(4.20) x− 2z = 0, y − 2w = 0,

which, together with (4.14) and (4.17), implies that P satisfies G1 = G2. This
yields that (2) ⇒ (1) holds. Therefore the proof of Theorem B is completed.

5. Examples

In this section, we prove Example C stated in Section 1.
We consider the four points in the plane R

2 defined by

(5.1) A(x, 0), B(0, 1), C(−1, 0), D(0,−1).

If x > 0, then the quadrangle ABCD is convex. In case x < 0 with x 6= −1,
it is concave. We denote by P (x) the quadrangle ABCD. Then for x > 0 the
centroids G1 and G2 of P (x) are respectively given by

(5.2) G1 =

(
x
√
x2 + 1−

√
2

2
(√

x2 + 1 +
√
2
) , 0
)

and

(5.3) G2 =

(
x− 1

3
, 0

)
.
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Note that even if x < 0 with x 6= −1, the centroids G1 and G2 of P (x) are also
given by (5.2) and (5.3), respectively.

It follows from (5.2) and (5.3) that P (x) satisfies G1 = G2 if and only if

(5.4) f(x) = g(x),

where we put

(5.5) f(x) = (x+ 2)
√
x2 + 1, g(x) =

√
2(2x+ 1).

When x ≥ 0, note that

(5.6) f(0) = 2 >
√
2 = g(0), f(1) = 3

√
2 = g(1)

and

(5.7) f ′(1) =
5
√
2

2
> 2

√
2 = g′(1).

Hence, there exists a number a1 ∈ (0, 1) which satisfies f(a1) = g(a1). Thus,
the convex quadrangle P (a1) satisfies G1 = G2 but it is not a parallelogram.

When x < 0 with x 6= −1, note that

(5.8) f(−2) = 0 > −3
√
2 = g(−2).

If x < −2, we have f(x) < 0 and g(x) < 0. Furthermore, the functions satisfy

(5.9) lim
x→−∞

f(x)

g(x)
= ∞.

Hence, there exists a number b(< −2) such that f(b) < g(b). Thus, there
exists also a number a2 ∈ (b,−2) satisfying f(a2) = g(a2). Therefore the
concave quadrangle P (a2) satisfies G1 = G2 but it is not a parallelogram.

This completes the proof of Example C.
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