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Dedicated to Arnold Kirsch (Germany, 1922-2013) on
the 10th anniversary of his death.

Abstract: We analyze briefly different kinds of centroids of
quadrilaterals and give geometrical and elementary proofs
that in the world of quadrilaterals, only parallelograms have
the property that their laminar centroid coincides with the
vertex centroid. This paper is based on short papers (in
German) by Arnold Kirsch (Kassel, Germany, 1922-2013)
published between 1987 and 1995. We think these deserve
to be better known – published proofs in mathematical
journals in English language are usually rather complex (e.g.,
Kim 2016, 2020).

Definitions. A lamina is a flat object of uniform thickness.
The laminar centroid of a flat region is the centre of gravity of
the region when it is regarded as a thin lamina. It is also
called the geometric centroid. The vertex centroid of a polygon
is the centre of gravity of a system of unit masses placed at
the vertices of the polygon.

In the world of triangles, the laminar centroid always
coincides with the vertex centroid (intersection point of the
medians). This is an elementary and well-known fact. We
proceed to prove this using the principle of levers from
elementary physics.
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Lemma 1: The vertex centroid G of a pair of point masses (weights w1and w2) lies on the connecting line
and the corresponding distances l1, l2 have the ratio l1

l2 = w2
w1

. For mechanical purposes, one can imagine
that at the centroid G, a combined weight w1 + w2 is concentrated. In terms of analytical geometry, the
point G is the weighted arithmetic mean of the points G1 and G2:

G =
w1

w1 + w2
· G1 +

w2

w1 + w2
· G2.

Figure 1. Law of levers.

Drawing on this fact, one can give a physically motivated proof that the medians of a triangle concur,
intersecting each other in the ratio 2: 1. Assume that at the vertices of a triangle we have unit point masses,
and we want to determine the centroid of these three point masses (we call this the ‘vertex centroid’).
Lemma 1 tells us that the centroid of the pair of unit masses at A and B is at the midpoint MAB of AB,
where we then have mass 2. Using Lemma 1 again, we see that the centroid of the three unit-masses lies on
the median mc = CMAB, at the point G such that CG:GMAB = 2: 1. We may imagine all three
unit-masses to be concentrated at G (with total mass 3).

Figure 2. The triangle centroid as the vertex centroid.

Since the same must hold for the other two medians, and the centroid is unique, we have proven two
things: (1) The medians concur at a point that trisects all three of them; and (2) the point of concurrence
is the vertex centroid. Note that this approach does not explain why the laminar centroid of the triangle lies
at the same point. Here is one approach which explains why. We divide the triangle into infinitesimally
thin stripes parallel to AB. Each of these stripes has its center of mass at its midpoint, so the center of mass
of the whole lamina must lie somewhere on the line consisting of all these midpoints, which is the median
CMAB. By a symmetric argument, it must also lie on the other two medians, hence the intersection point
of the three medians is also the laminar centroid.

Let us denote the laminar centroid of a polygon by GL and its vertex centroid by GV.
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The following must be noted. The property GL = GV is a peculiarity of triangles (in the sense that it is true
for all triangles), but for other polygons this is not necessarily true. Of course, for regular polygons
GL = GV still holds (by symmetry, both must lie at the centre of the polygon), but for general polygons it
is of great interest to ask: For which polygons is it true that GL = GV? We will restrict our exploration in
this only article to quadrilaterals and ask: Which quadrilaterals have the property GL=GV? (We are not
aware if there are any results of this kind for polygons with more than 4 vertices.)

It is easy to see that parallelograms have the property that GL = GV (= intersection point of the two
diagonals). Assume we have a parallelogram ABCD with unit mass at each vertex. Then according to
Lemma 1, the intersection point of the diagonals (where they bisect each other) is the centroid of the two
masses at A and C (mass 2 units), and also of the two masses at B and D (again mass 2 units). Hence the
point of intersection of the diagonals is the vertex centroid GV.

To see that this is GL too, we consider the laminar centroids of triangles ABC and ADC, namely, GL(ABC)
and GL(ADC). (These coincide with respective vertex centroids.) Both lie on the diagonal BC and lie at
equal distance from the point of intersection of the diagonals (note the half-turn symmetry of a
parallelogram with this point as centre). For mechanical purposes we can imagine the whole masses of
triangles ABC and ADC being concentrated at these two triangle laminar centroids. And since these
masses (areas) are equal, it follows that the laminar centroid of the whole parallelogram lies at the
intersection point of the diagonals (Figure 3). So, all parallelograms have the property that GL = GV.

Figure 3. The intersection point of the diagonals of a parallelogram are GV and GL.

What has been proved above is well known. Now for the not so well-known part: parallelograms are the
only quadrilaterals with the property GL=GV. Here Arnold Kirsch (of Germany, a very deserving professor
for mathematics and mathematics education at the University of Kassel) came up with a very elementary
proof which students in grades 9 or 10 can follow and which not only answers the question (verification)
but explains why it is true (explanation). Verification and explanation are two important functions of proof
(but there are also others, see De Villiers 2012).

We did not find an elementary proof in the English literature (if somebody happens to know one, please
inform the author), hence we wanted to share his ingenious ideas, formulated in German (Kirsch 1987,
1995), with potentially more readers in the English language.

Theorem: A quadrilateral has the property that GL=GV if and only if it is a parallelogram.
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For this topic, we can omit crossed quadrilaterals because it is not so clear what is the interior of such a
quadrilateral, and we restrict to convex or concave quadrilaterals (Figure 4a, 4b). In both cases there is an
interior diagonal (AC in Fig. 4) which itself or its extension meets the other diagonal (BD in Fig. 4).

Figure 4a. Convex quadrilateral. Figure 4b. Concave quadrilateral.

The part “if ” of the Theorem (the easy and well-known part) has been dealt with above. For the “only if ”
part we use another lemma. We lay the groundwork for this by stating two facts:

(a) If the vertex D of ∆DAC is moved parallel to AC by u, then the centroid G2 of ∆DAC is moved by
1
3u (see Figure 5; here M denotes the midpoint of AC). This should be clear since G2 =

D+A+C
3 .

Figure 5. If D ′ = D+ u, then G
′

2 = G2 +
1
3u.

(b) If vertices A and C of ∆ABC are moved along the straight line AC by v, then the centroid G1 of
∆ABCis moved by 2

3v (see Figure 6; M is the midpoint of AC; M ′ is the midpoint of A′C ′). This
is so since G1 =

A+B+C
3 .
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Figure 6. If A′ = A+ v and C ′ = C+ v, then G
′

1 = G1 +
2
3v.

These two facts and the following lemma may also be formulated using idea of shear mappings, but this is
probably not very well-known at school. Knowledge of shear mappings is not necessary; we can do
without it (the intercept theorem or homothety suffice).

Lemma 2: Let ABCD be a quadrilateral with interior diagonal AC. Let the points A,C be translated along
AC by a vector v to A′,C ′; let the points B,D be translated by −v to B ′,D ′. Then quadrilateral
A ′B ′C ′D ′ has the same vertex centroid as quadrilateral ABCD, and the laminar centroid GL of ABCD
maps to the laminar centroid G′

L of A ′B ′C ′D ′ via the translation 1
3v (see Figure 7).

Figure 7. To Lemma 2

Proof of Lemma 2: The first claim in Lemma 2 is immediately clear because the total shift of all four
points together is 0.

From the facts a) and b) presented earlier, the shifts G1 � −→ G′

1 and G2 � −→ G′

2 of the centroids of the
triangles are given by 1

3v. Now by Lemma 1, the laminar centroid GL of ABCD divides line segment G1G2
in the same ratio as the laminar centroid G ′

L of A ′B ′C ′D ′ divides line segment G′
1G′

2. This ratio is given
by the areas of the two triangles; these are the weights. But since the areas of the triangles do not change
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(same base and same altitude), the ratios are the same! It follows that the shift GL � −→ G
′

L is given by 1
3v,

too. ■
Now we are ready to prove the ‘only if ’ part of the Theorem. Let ABCD be a quadrilateral with interior
diagonal AC and the property GL = GV. We want to prove that it must be a parallelogram. We apply the
operation of Lemma 2 to ABCD, choosing the vector v along AC in such a way that the diagonal A′C ′ of
the new quadrilateral is bisected by the other diagonal B ′D ′ at points M ′ = N ′ (for this, we choose
v = 1

2MN where N denotes the intersection point of AC and BD; see Figure 8).

Figure 8. The operation of Lemma 2 with v = 1
2MN .

After this operation B ′D ′ will surely be an interior diagonal of the quadrilateral A′B ′C ′D ′, and again we
apply the operation of Lemma 2, this second time with vector w parallel to B ′D ′, and we choose w in
such a way that the diagonal B ′′D ′′ of the image quadrilateral A ′′B ′′C ′′D ′′is bisected by the other
diagonal A ′′C ′′. Now both diagonals bisect each other, which means that A ′′B ′′C ′′D ′′ must be a
parallelogram. We know that in parallelograms GL = GV holds, so

GL (A′′B ′′C ′′D ′′) = GV (A′′B ′′C ′′D ′′) .

Since the vertex centroid did not change when applying the two operations, we know that

GV (A′′B ′′C ′′D ′′) = GV (ABCD) ,

hence GL (A′′B ′′C ′′D ′′) = GV (ABCD) .

On the other hand, we know that

GL (A′′B ′′C ′′D ′′) = GL (ABCD) +
1
3
v + w,

and since GV (ABCD) = GL(ABCD), this means that this added shift vector 1
3v + w must vanish. This

vanishes only for v = 0 = w, which means that ABCD is a parallelogram. ■
This was, roughly spoken (we made some additional sketches and did not translate literally), the version of
Kirsch 1987. Then K. Seebach (Munich) came up with another purely geometric proof (Seebach 1994)
using the principle of homothety. And it was again A. Kirsch, 1995, who made this proof still easier and
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shorter, and he used the words (translated from German) “hereby probably the ideal geometric proof of
the statement is found!”

This proof needs the knowledge how to construct the laminar centroid of a quadrilateral ABCD. First,
draw the diagonal AC and the laminar centroids of ∆ABC and ∆ADC, i.e., GL(ABC) and GL(ADC). The
laminar centroid GL(ABCD) of the whole quadrilateral must lie on the line segment connecting GL(ABC)
and GL(ADC) (we even know where, but now that is not important).

Doing the same with the other diagonal BD, we know that GL(ABCD) must be the point of intersection
of the segments GL (ABC)GL(ADC and GL (ABD)GL(CBD). One also must know how to construct the
vertex centroid of a quadrilateral ABCD: it is the midpoint of the line segment joining the midpoints of
the two diagonals. These two principles were already used in Figure 3.

Assume that ABCD is not a parallelogram. Let S be the intersection point of the diagonals (Figure 9); then
S is not simultaneously the midpoint of both the diagonals.

Figure 9. Very short and purely geometric proof – convex case

Then, using the well-known properties of triangle centroids, the intercept theorem, and its converse, one
can see immediately (note the parallelogram with opposite vertices S and GL(ABCD):

SGL (ABCD) =
2
3
SM 1 +

2
3
SM 2 =

2
3
(SM 1 + SM 2) �=

1
2
(SM 1 + SM 2) = SGV (ABCD) , (∗)

hence GL (ABCD) �= GV(ABCD).

Remarks

• Note that our precondition is that while we do not have M1 = S = M2(because ABCD is not a
parallelogram), the case M1 = S �= M2 is covered by the above.

• The use of vector notation in (*) is just for abbreviation; one could easily avoid it and describe
with more words the resulting parallelogram with opposite vertices S and GL(ABCD). Thus, this
proof can be seen as purely geometric, and not analytic, although we used vectors in (*).
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In the concave case nearly nothing changes (Figure 10), the only difference is that S lies in the exterior of
ABCD and the two triangles ∆ABD and ∆CBD are not “addeD ” (for getting the quadrilateral ABCD) but
“subtracteD ”.

Figure 10. Short and purely geometric proof – concave case

Here is another short proof of the Theorem with coordinates, vectors, and an oblique coordinate system.

We use an oblique coordinate system. The origin lies in the intersection point of the diagonals of the
quadrilateral. The first axis is the straight line AC and the second BD. Then the vertices are:

A = (a, 0); B = (0, b), b < 0; C = (c, 0), c > a; D = (0, d) , d > 0.

Then the vertex centroid is given by

GV =

(
a+ c

4
,
b+ d

4

)
.

The centroid of the ∆ABC is

G1 =

(
a+ c

3
,
b
3

)
,

and the centroid of ∆ADC is

G2 =

(
a+ c

3
,
d
3

)
.

According to Lemma 1, the laminar centroid GL of the quadrilateral ABCD is the weighted mean of the
points G1 and G2, where the weights are the triangle areas or weights proportional to these areas, namely,
−b and d:

GL =
−b

(−b) + d
·
(
a+ c

3
,
b
3

)
+

d
(−b) + d

·
(
a+ c

3
,
d
3

)
=

(
a+ c

3
,
b+ d

3

)
.

Hence, GL = GV holds if and only if a = −c and b = −d, i.e., ABCD is a parallelogram. ■
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Conclusion
In many cases school students get wrong impressions concerning centroids (e.g., that there is only one
kind of centroid, or that if distinguished at all, the laminar centroid necessarily coincides with the vertex
centroid, as with triangles). Dealing with that topic in case of quadrilaterals (how to determine the laminar
centroid of a quadrilateral, parallelograms have the property GL = GV, and only they have this property,
and so on) provides a possible way to prevent this misconception. Many proofs for “only parallelograms
have this property” are too complicated to be treated at school but Kirsch’s proofs are elementary, purely
geometric and students can easily follow every single step. Of course, it cannot be expected that students
find these steps on their own; this was an ingenious idea of Arnold Kirsch. And using the alternative proof
using analytic geometry provides a good opportunity to make use of oblique coordinate systems.
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