Dirk Laurie's Hexagon Problem

Michael N. Fried

July 19, 2020

The following problem was posted by Michael de Villiers, who said, in turn, that it was given to him by a colleague, Dirk Laurie.

Laurie's Problem: Suppose $A B C D E F$ is a hexagon inscribed in a circle with unit radius, $A F=B C=E D=1$, and P, Q, R are the midpoints of the sides $A B, C D, E F$, respectively. Show that $P Q R$ is an equilateral triangle.

One solution suggested by Michael de Villiers uses another interesting theorem proven by Waldemar Pompe of Warsaw University. It states:

Pompe's Theorem: Let $A B C D E F$ be a hexagon such that $A B=$ $B C, C D=D E, E F=F A$ and the sum of the angles B, D, E is 2π (thus also the sum of the angles A, C, E is also 2π). Then the angle $B D F=\frac{1}{2} E D C, F B D=\frac{1}{2} A B C, D F B=\frac{1}{2} E F A$.

The theorem is easy to prove.
Let the triangle $D E F$ be rotated through angle $E D C$. Since $E D=D C, E$ will be moved to C and F to a point F^{\prime} (see the figure below). Moreover, the angle $F^{\prime} D F$ is equal to $D E F$ and, of course, $D F=D F^{\prime}$

Note that since the sum of the angles A, C, E is 2π and $B C D=C$ and $F^{\prime} C D=E$, we have $B C F^{\prime}=A$. Also, $F^{\prime} C=A F$ and $A B=B C$. Therefore, the triangles $B F^{\prime} C$ and $B F A$ are congruent, so that $B F^{\prime}=B F$. From the congruence of the triangles, we see too that $B F^{\prime} C$ could have been obtained from $B F A$ via a rotation about B through angle $A B C$; that means that angle $A B C=F^{\prime} B F$.

Since $B F^{\prime}=B F$ and $D F=D F^{\prime}, B F^{\prime} D F$ is a "dart," from which we conclude that $B D$ bisects angles $F^{\prime} B F$ and $F^{\prime} D F$, so that $B D F=\frac{1}{2} F^{\prime} D F=$ $\frac{1}{2} E D C$ and $F B D=\frac{1}{2} F^{\prime} B F=\frac{1}{2} A B C$. Similarly we can show that $D F B=$ $\frac{1}{2} E F A$.

So, how does Michael de Villiers use this theorem to solve Laurie's problem?
Let U, S, T be the midpoints of of $A F, B C, E D$ respectively. Complete the hexagon, $P S Q T R U$. Join $F B$ and $A C$: these are equal since both subtend an arc equal to $A B+\frac{\pi}{3}$. Moreover, $U P \| F B$ and $P S \| A C$ and $U P=P S=\frac{1}{2} F B$. Also since arc $A F=\frac{\pi}{3}$, angle $A P U=A B F=\frac{\pi}{6}$. Similarly, $B P S=\frac{\pi}{6}$, so that $U P S=\frac{2 \pi}{3}$. By the same argument, we have $U R T=T Q S=\frac{2 \pi}{3}$ and also, $U R=R T, T Q=Q S$. Therefore, the hexagon $P S Q T R U$ satisfies the conditions of Pompe's theorem, and, therefore, the angles $R P Q=P Q R=Q R P=\frac{1}{2} \frac{2 \pi}{3}=$ $\frac{\pi}{3}$.

Here are two other solutions to the problem.
The first is via complex numbers. Let $\lambda=e^{i \frac{\pi}{3}}$ so that $\lambda^{2}=\lambda-1$ and $\lambda^{3}=-1$, and let the rotations through arcs $A B$ and $C D$ be β and δ, respectively. Then we have:

$$
\begin{gathered}
A=\lambda F \\
B=\lambda \beta F \\
C=\lambda^{2} \beta F \\
D=\lambda^{2} \beta \delta F \\
E=-\beta \delta F
\end{gathered}
$$

Also, we have:

$$
\begin{aligned}
P & =\frac{1}{2}(A+B) \\
Q & =\frac{1}{2}(C+D) \\
R & =\frac{1}{2}(E+F)
\end{aligned}
$$

Thus, we have to show that $P-Q=\lambda(R-Q)$ or $2(P-Q)=2 \lambda(R-Q)$. Now, $2(P-Q)=A+B-C-D=\left(\lambda+\lambda \beta-\lambda^{2} \beta-\lambda^{2} \beta \delta\right) F=\left(\lambda+\beta-\lambda^{2} \beta \delta\right) F$ And $2(R-Q)=E+F-C-D=\left(-\beta \delta+1-\lambda^{2} \beta-\lambda^{2} \beta \delta\right) F=\left(1-\lambda^{2} \beta-\lambda \beta \delta\right) F$ But $\left(\lambda+\beta-\lambda^{2} \beta \delta\right)=\lambda\left(\left(1-\lambda^{2} \beta-\lambda \beta \delta\right)\right.$, so we're done.

A different geometric proof is the following. It was my original proof of the proposition after Michael de Villiers posted it. In my way of visualizing the problem, I consider the chords $A F, B D, E D$ as sides of three equilateral
triangles hinged at the center of the circle. Initially, these triangles are side by side, that is, $A=B$ and $C=D$. In this initial state, P also coincides with A and B, Q with C and D, and R with the center of the circle, O, so that the triangle $P Q R$ coincides with the equilateral triangle whose side is chord $B C$. We will now proceed in two steps to rotate the triangles into a general position. First, rotate the leftmost triangle $A O F$ counterclockwise to an arbitrary position as in the figure below.

Again, P and R are the midpoints of $A B$ and $E F$, respectively, and Q, the midpoint of $C D$, still coincides with C and D. Join $O R$ amd $O P$. Since angle $F O E=\pi-A O B$, we have $R O E=\frac{\pi}{2}-P O B=P B O$. Since triangles $P B O$ and $R O E$ are right triangles and $O B=O E$, they are congruent. Hence, $P B=O R$. Since angle $P B C=\frac{\pi}{3}+P B O=\frac{\pi}{3}+R O E=R O Q$, we can rotate triangle $P B Q$ into $R O Q$ about Q through an angle of $\frac{\pi}{3}$. Thus the line $P Q$ is rotated into the line $R Q$ also through an angle of $\frac{\pi}{3}$, from which it follows immediately that $P Q R$ is equilateral being isosceles with an apex angle equal to $\frac{\pi}{3}$.

Now, from this position we will rotate triangle $C O E$ clockwise to an arbitrary position $D O E^{\prime}$ as in the next figure. In order to leave traces of the previous position, we are using E^{\prime} and R^{\prime} for the third vertex of the rotating equilateral triangle and midpoint of $F E^{\prime}$.

So, consider. From before, $P C=P R$ and $R P C=\frac{\pi}{3}$. Also since by the rotation of the equilateral triangle $C O E$ to position $D O E^{\prime}$ we can see that $C D=E E^{\prime}$ and it has been rotated through an angle of $\frac{\pi}{3}$.

Moreover, since R and R^{\prime} are the midpoints of $F E$ and $F E^{\prime}$ respectively, $R R^{\prime}=\frac{1}{2} E E^{\prime}=C Q$ and since $R R^{\prime}$ is also parallel to $E E^{\prime}$, we can see that $C Q$ has also been rotated through an angle of $\frac{\pi}{3}$ to position $R R^{\prime}$.

Hence the triangle $P C Q$ has been rotated through an angle of $\frac{\pi}{3}$ about P to the position of triangle $P R R^{\prime}$ (I have shaded that triangle) so that also $P Q$ is rotated through $\frac{\pi}{3}$ to $P R^{\prime}$. Therefore, by the same reasoning as above, triangle $P Q R^{\prime}$ is equilateral.

