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The Golden Ratio and Fibonacci 
In a golden rectangle, the rectangle obtained by removing a square from one end is similar to 

the original rectangle (see Figure 1). The ratio of the length to the width of such a rectangle is 

called the golden ratio and is often denoted by the symbol ! . This ratio ! = a
b

 is therefore 

given by: 
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Cross multiplying and then dividing by b2  gives 
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so the golden ratio is the positive root of the quadratic equation 
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! x !1 = 0  

and has the value 
(1 + 5)

2
!  1.61803. 
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Figure 1 

 

The well-known Fibonacci sequence: 

 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... 
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can easily be constructed by the recurrence relation Fn + Fn+1 = Fn+2, F1 = 1, F2 = 1, and 

where the n -th term is called Fn. Of course, any arbitrarily chosen F1 and F2 would do. A 

surprising result is the relationship of the Fibonacci sequence with the golden ratio: 

 lim
n!"

F
n +1

F
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= # . 

 

Since convergence is fast, it is a good activity to compute these ratios using a calculator or a 

computer and watching them approach ! . 

 

The Precious Metal Ratios 
The Fibonacci sequence can be considered a special case of a whole family of sequences 

which can be constructed by simple variations to the above recurrence relation. For example, 

a general recurrence relation can be defined as Fn + Fn+k = Fn+k+1 where k is an integer so 

that k !  0. This implies that the first k + 1 terms can be arbitrarily chosen.  

The following questions now seem natural to investigate further. Do the ratios of 

adjacent terms for this general family of sequences also approach limits? If so, are they also 

connected to the solution of some corresponding polynomial equations?  

 

For example, consider the case k = 2 with the property Fn + Fn+2 = Fn+3: 

1, 1,  1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, ... 

Here we have the following ratios (correct to four decimals): 
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From the repetition of the first two decimals, we clearly already have convergence correct to 

two decimal places. This limit is the real solution of the equation x3 ! x2 !1 = 0 . 

 

In fact, each of these sequences is connected to a unique ratio. It seems appropriate to call this 

family of ratios the "precious metal" ratios with the golden ratio being one of them. It is a 

good exercise to construct some sequences of one's own in order to discover the 

generalization below, and convince oneself of its truth. Technology like graphics calculators 

with table facilities, or a spreadsheet on computer, could be very useful in this respect. In 

what follows, a partial proof of these observations is given. 

Theorem 



If Fn is the nth term of a sequence with the property: Fn + Fn+k = Fn+k+1, then for k !  0: 
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Partial Proof 

If we assume that lim
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Thus, if lim
n!"

F
n +k+1

F
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= #  exists, then !  is a root of the equation xk+1 ! xk !1 = 0 . Q.E.D.  

To prove the existence of this limit in general is however a matter that goes beyond the scope 

of this article. For k is odd, the equation x =1 +
1

x
k

 has two real solutions as easily seen 

graphically, and the approach used by [1] can be generalized. However, for k is even (where 

there is only one real solution as easily seen graphically), and the more general case which 

includes the consideration of complex roots, it appears that one would have to utilize an 

approach similar to that of [2].2 

 

Students who explore it empirically may notice that these ratios !
k
 start at 2 for k = 0, and 

then appear to decrease towards a limiting value of 1 as k increases. This observation can also 

easily be explained as follows. For k = 0, the series has the rule Fn + Fn = Fn+1, obviously 

giving us the constant ratio 
F
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F
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= 2 , which of course corresponds to the solution of the 

equation x =1 +
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x
k

 for this value of k. By letting k increase in the latter equation, it now 

                                                 
2 A complete proof can be found in an article by Sergio Falcon (2002) in IJMEST, and which can be 
downloaded directly from http://mysite.mweb.co.za/residents/profmd/fibonacci.pdf 
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follows that 
1

x
k

 decreases and therefore the root !  must correspondingly decrease. Finally, 

taking the limit as k !"  of the same equation, we obtain ! =1 . 

 

It is also interesting to ask: what geometric interpretation can be given to these ratios !
k
? 

Clearly if we start with a rectangle with sides a and b where a ! b , then 
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%1 = 0 . Multiplying through by b
k+1  and rearranging we obtain: 
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. Geometrically, this therefore means that after the square with sides b is 

removed, the rectangle obtained must be similar to a rectangle with sides ak  and bk . 

Examples of corresponding rectangles for k = 0, k = 1 and k = 2 are respectively shown in 

Figures 2a, 2b and 2c. It is also obvious that as k increases, b approaches a and the rectangle 

tends towards a square.  
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Figure 2   

 
A Dual Family of Sequences 
Lastly, it is also interesting to note that for each of the above sequences there exists a dual 

sequence with the recurrence relation Fn !  Fn+k = Fn+k+1 for k !  0, and corresponding 

ratio, lim
n!"

log F
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logF
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= # , where !  is the positive root of xk+1 ! xk !1 = 0 . 
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