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 NAPOLEON TRIANGLES AND ADVENTITIOUS ANGLES

 Napoleon triangles and adventitious angles

 MICHAEL FOX

 In this article I investigate Napoleon triangles, generalisations of the
 mysterious equilateral triangle in Napoleon's theorem. I start with that
 theorem, develop some analogous results, find configurations with
 unexpected integer angles, and return to an extension of Napoleon's
 theorem. Many of the geometrical proofs depend upon spiral similarities,
 and the numerical work uses some unfamiliar trigonometrical identities.

 A spiral similarity is a transformation combining a rotation with centre
 A and angle 0, say, and a dilatation with factor k having the same centre.
 This similarity, A(0, k), transforms any figure into one that is directly
 similar. Any two directly similar figures are connected either by a dilatation
 (if their sides are parallel) or a spiral similarity. A (0, k) followed by B (Q, I)
 is equivalent to C (0 + 0, kl), where C is an invariant point in the joint
 transformation. Although we shall not need to find the centre of an arbitrary
 similarity, it is easily done. Given two points A, B and their images P, Q, let
 AB, PQ intersect at 0. Then the points of intersection of circles APO, BQO
 are 0 and the centre of the similarity. Spiral similarities are discussed by
 Coxeter and Greitzer [1], and by Johnson [2], who calls them homologies.

 I suppose Napoleon's theorem surprises everyone on the first encounter:
 the centres of equilateral triangles drawn outwards on the sides of an
 arbitrary triangle are themselves vertices of an equilateral triangle. To prove
 it, I use a slight adaptation. If triangle ABC has isosceles triangles PBC,
 QCA, RAB drawn outwards on its sides, each with base angles of 30?, then
 triangle PQR is equilateral. Although we can use trigonometry to show that
 the length of any side is symmetrical in a, b, c and so equals the others, I
 offer a geometric proof that can easily be generalised.

 B

 3^ 30?"""""" / I30 A

 'Q

 FIGURE 1
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 In Figure 1, triangle A'CB is equilateral. The image of PQ under
 C (30?, A'C/ PC) is A'A, and the image of A'A under B (30?, PB/A'B) is PR.
 The scale factor (A'C IPC). (PB/A'B) = 1, and P returns to P after the
 double transformation, which is therefore equivalent to P (60?, 1) - a pure
 rotation. Thus PR = PQ, ZQPR = 60?, and triangle PQR is equilateral.

 Now move P and A', keeping triangles PCB and A'CB isosceles. Let
 their base angles be a and a + /3 as in Figure 2. Draw triangles CAQ and
 BAR similar respectively to CA'P and BA'P. Then PQR will be isosceles
 with PR = PQ and ZQPR = 2/3. The proof is simple: C (/f, AC'/PC)
 followed by B (3, PB/A'B) takes PQ by way of A'A to PR. So the combined
 similarity is P(2/3, 1), and the result follows. I call any triangle such as
 PQR, whose shape is independent of ABC, a Napoleon triangle.

 B

 aA

 C 2A

 FIGURE 2

 If we now remove the scaffolding, triangle A'CB, we have a result
 analogous to my version of Napoleon's theorem. Given an arbitrary triangle
 ABC, take points P, Q, R such that BAR, CAQ are similar triangles with base
 angles /3, y, and triangle BPC is isosceles with base angles a. Then, provided
 a + /P + y = 90?, PQR is an isosceles triangle with angles 2/3, a + y,
 a + y.

 The case a = 15?, /3 = 45?, y = 30? appears as a problem in
 Schumann and Green [3] who adapted it from the 1975 Mathematical
 Olympiad (see also [4]). Any configuration with /8 = a + y = 45? will
 generate a right-angled isosceles triangle, and taking /3 = 30?,
 a + y = 60? will give an equilateral Napoleon triangle. We may even set
 /P = 90?, a = -y to make P, Q, R collinear, with P the mid-point of QR.
 PQR is a degenerate Napoleon triangle.

 We can go further, making the auxiliary triangle A'CB and the position
 of P more general. Take triangle A'CB and the point P with the angles
 shown in Figure 3. Draw CAQ and BAR similar to CA'P and BA'P. Then we
 can find a spiral similarity that takes PQ to PR: for C (s, A'C / PC) followed
 by B(p, PBIA'B) takes PQ by way of A'A to PR. So ZQPR is p + s. It is

 414
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 easier to repeat the process than to simplify the expression for the dilatation.
 Find C' so that BRC' is similar to BPC, then ABC' is similar to A'BC, and
 ARC' is similar to A'PC and AQC. Apply B (u, C'B/ RB) then A (r, RAI C'A)
 to RP, which becomes RQ. This shows that ZPRQ is r + u. Since
 p+q+r+s + t + u = 180?, ZRQP is q + t, and PQR is a Napoleon
 triangle, as its angles are independent of ABC. This proves that if, outside an
 arbitrary triangle ABC, we draw three triangles A'BC, AB'C, ABC' similar to
 each other (though not necessarily to ABC), and take corresponding points
 P, Q, R in the three triangles, then PQR is a Napoleon triangle with
 ZQPR = ZQCA + ZABR, etc.

 A' s C

 AP /

 FGRQ

 FIGURE 3

 Since triangle ABC is arbitrary, we can deform it. For instance we can
 move B across the line AC; triangles PBC, QCA, RAB (and A'BC, etc.) will
 overlap ABC, but PQR will still be the same shape (although with the
 opposite sense). Our results therefore hold in these cases as well.

 Can we find integer values in degrees for p, q, r, s, t, u, v? They satisfy

 p + q + r + s + t + u = 180?.  (1)
 A'

 C

 FIGURE 4
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 If we use the sine rule in the three small triangles in Figure 4, we find

 sinu sins sint PC PA' PB

 sinq sinr sinp PB PC PA'

 thus sinp sin q sin r = sin s sin t sin u. (2)

 If we are given any four of these angles we can find the other two. For if
 we know p, q, r, s, then (1) gives the value of t + u, and (2) becomes
 sin t sin u = sinp sin q sin r/ sin s. We can express sin t sin u as
 [cos (t - u) - cos (t + u)] / 2, and so find the value of t - u, from which
 we obtain t and u. If instead we know p, q, s, t, then we set

 sin r sin s sin t

 sin u sinp sinq
 We know the value of r + u: let us call it v. So r = v - u, and

 sin s sin t
 s= sin v cot u - cos v.

 sin p sin q

 We find cot u, which gives u and r.

 Once we have a set of angles p, q, r; s, t, u satisfying (1) and (2), we can
 obtain several configurations of A', B, C, P. We must use each angle once;
 the marked angles in each small triangle must come one from each triple,
 and the two parts of angles A', B, C must also be one from each triple. So
 the solution a, 1i, y; a, /3, y used in Figure 2 can be rearranged so that A'BC
 is no longer isosceles, and P may be the incentre, circumcentre or
 orthocentre of A'BC. The angles of PQR will, of course, change; but PQR
 will still be a Napoleon triangle with integral angles. Because of these
 possible rearrangements we can use a standard form for listing solutions of
 (1) and (2). I shall take p < q < r, p < s < t < u; and if p = s, then
 q < t.

 To find non-trivial integral solutions of (1) and (2) I had to resort to a
 computer search. This could only give possibilities: sets of values within,
 say, 10-5 of an integer. Each trial solution had to be verified for its
 exactness. I restricted the search by taking P inside A'CB, and looking for
 solutions in standard form. Even so, the computer tested over 600,000 sets
 of values to come up with 123 possible distinct solutions, all of which
 proved to be exact. Of these, 85 are in four families; the other 38 being
 adventitious. The families are

 A. 0, 30 - 0, 90+0; 20,30 - 0,30 1 < 0 < 14

 B. 0, 30-0, 60+0; 0,30,60 -20 1 < 0 < 29

 C. 0, 30, 90 -30; 20,30-0,30+0 1 < 0 < 29

 D. 0, 60-40, 60+0; 30,30-20,30+0 1 < 0 < 14

 These give 85 distinct solutions rather than 86, since 10, 20, 70; 10, 30,
 40 is in B and D, with 0 = 10 in each.
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 The 38 adventitious solutions are listed in the table.

 94; 10, 16, 24.

 62; 8, 12, 50.

 93; 6, 12, 48.

 81; 6, 15, 51.

 75; 9, 12, 51.

 93; 12, 18, 24.

 66; 9, 15, 48.

 75; 9, 24, 30.

 81; 15, 18, 24.

 75; 12, 21, 27.

 54; 9, 15, 51.

 69; 15, 18, 27.

 63; 15, 21, 24.

 64; 10, 18, 46.

 126; 6, 12, 24.

 99; 6, 12, 48.

 96; 6, 18, 42.

 114; 12, 18, 18.

 105; 12, 18, 24.

 6, 18, 78; 6, 24, 48.

 6, 18, 84; 12, 12, 48.

 6, 21, 57; 9, 12, 75.

 6, 30, 66; 12, 18, 48.

 6, 30, 78; 18, 24, 24.

 6, 42, 48; 12, 18, 54.

 6, 42, 54; 12, 24, 42.

 9, 15, 75; 9, 18, 54.

 9, 15, 81; 12, 15, 48.

 9, 15, 87; 12, 18, 39.

 9, 18, 69; 12, 15, 57.

 9, 33, 54; 15, 21, 48.

 10, 26, 70; 22, 24, 28.

 12, 12, 84; 12, 18, 42.

 12, 24, 66; 18, 30, 30.

 12, 30, 48; 18, 18, 54.

 12, 33, 39; 15, 18, 63.

 15, 24, 57; 18, 27, 39.

 18, 24, 54; 24, 30, 30.

 Some of them are tricky to prove. However, there are three identities
 which are useful.

 1. We can expand the products of sines into sums. The six angles total
 180?, so we have sin(p + q + r) = sin(s + t + u). Consequently,
 sinp sin q sin r = sin s sin t sin u is equivalent to g(p, q, r) - g(s, t, u) = 0,
 where g(p, q, r) = sin (-p + q + r) + sin (p - q + r) + sin (p + q - r).

 2. sin (60? + 0) - sin (60? - 0) _ sin 0.

 This is easily proved.

 3. sin 54? - sin 18? = sin 30?.

 In Figure 5, triangles BDE, BDA
 and ADE are isosceles, giving
 BE = BD = DA. Also EF is perpen-
 dicular to AD, so DF = IDA. Thus

 BE(sin54? - sin 18?) = CF - CD

 = DF = BE,

 whence sin 54? - sin 18? = ? = sin 30?.
 (We also have 2BE sin 180 = DE,
 and DE sin 54? = DF, proving that
 sin 18? sin 4? = 5t. Therefore -sin 18?
 and sin 54? are the roots of the

 equation 4x2 - 2x - 1 = 0.)
 B,

 FIGURE 5

 2, 34,

 2, 46,

 3, 18,

 3, 24,

 3, 30,

 3, 30,

 3, 39,

 3, 39,

 3, 39,
 3, 42,

 3, 48,

 3, 48,

 3, 54,
 4, 38,

 6, 6,

 6, 9,

 6, 12,

 6, 12,

 6, 15,
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 418 THE MATHEMATICAL GAZETTE

 As an example let us verify that

 sin 10° sin 26° sin 70° = sin 22° sin 24° sin 28°.

 Using identity 1 we try proving instead that

 (sin 86° + sin 54° - sin 34°) - (sin 30° + sin 26° + sin 18°)

 vanishes. The identity 3 reduces this to sin 86° - sin 34° - sin 26°, which
 we can write as sin (60° + 26°) - sin (60° - 26°) - sin 26°. The second
 identity shows that this is zero. So 10, 26, 70; 22, 24, 28 is a valid solution.

 We have seen that any solution, whether or not in standard form, makes
 PQR a Napoleon triangle with angles p + s, q + t, r + u. We find a
 surprising result if we rearrange the solution 6, 42, 48; 12, 18, 54, as 6, 42,
 48; 54, 18, 12. This gives a new configuration where PQR is equilateral
 (Figure 6); a result new to me.

 FIGURE 6

 So far I have taken P inside triangle A'CB; but why should it not be
 outside? Fortunately we can deal with this by transforming the solutions that
 we already have. There are two cases, depending on whether P is in a region
 marked I or II (Figure 7).

 If P is in I we reinterpret an existing solution (Figure 8). The sign
 convention is that angles measured towards or past an adjacent side (such as
 « + p in the right-hand diagram) are positive; those measured away from an
 adjacent side (such as p) are negative. We must take care at the new A', so
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 II
 II

 II
 I

 FIGURE 7

 C B5 C D

 FIGURE 8

 that the six angles total 180?. This gives -p, q + s, r + s; -s, t + p, u + p
 as a new solution. If we identify the new vertices differently, or start with a
 different arrangement of p, q, r; s, t, u, we obtain other solutions. Thus 10,
 20, 70; 10, 30, 40 transforms into -10, 30, 80; -10, 40, 50. If we rearrange
 the starting values as 30, 10, 40; 10, 70, 20 we get instead -30, 50, 20; -10,
 50, 100, which is -30, 20, 50; -10, 50, 100 in standard form.

 If P lies in II we can transform our basic triangle A'CB. Apply
 A' (t, A'B/A'P) to triangle A'PC, obtaining A'BP'; and A' (-r, A'C' /A'P), to
 A'PB, giving A'CP' (Figure 9) - this gives the same point P'. With our sign
 convention we find that p, q, r; s, t, u gives 180 - (p + t), -(q + t), r;
 180 - (s + r), - (u + r), t. We can relabel the transformed diagram to find
 other solutions, or rearrange the angles before the transformation. For
 example, 10, 20, 70; 10, 30, 40 gives 140, -50, 70; 100, -110, 30; which in
 standard form is -110, 30, 100; -50, 70, 140. The rearrangement 30, 10, 40;
 10, 70, 20 gives a new solution whose standard form is -80, 40, 80; -60, 70,
 130. The diagram for this solution is a remarkable quadrilateral (Figure 10)
 containing the first nine multiples of 10?.

 419
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 A' A'
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 B FIGURE 9 \ /
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 With these transformations, every basic solution with P inside ABC
 gives rise to many distinct solutions with P outside. Each of these, applied to
 an arbitrary triangle ABC, gives a configuration where at least one of PBC,
 QCA, RAB overlaps ABC, but PQR is still a Napoleon triangle. We now
 have every possible integer configuration, for if there were others, we could
 apply the inverse of one of the transformations and arrive at a new basic
 solution with P inside ABC. But there are no other such solutions.

 We have seen that any integer-angled isosceles triangle can be a
 Napoleon triangle. How can we determine what others there are? If we are
 given an arbitrary Napoleon triangle PQR, can we find triangles PBC, QCA,
 RAB with integer angles?

 To answer this we need another result. Apply P(180? - (r + s),
 PCIPA') to PA'B, transforming it into PCA"; and P(180? - (p + t), PB/PA')
 to PA'C, which becomes PBA" (Figure 11). The angles A", C, B are p + s,
 q + t, r + u. Now apply corresponding transformations to B'CA and C'AB,
 obtaining B"CA, C"AB, but leaving PBC, QCA and RAB unchanged (Figure
 12). Triangle PQR still has angles p + s, q + t, r + u, which are also the
 angles of A"CB, CB"A, BAC". We therefore have the generalisation of
 Napoleon's theorem, given by Wells [5]: on the sides of an arbitrary triangle
 ABC draw triangles A"CB, CB"A, BAC" similar to each other (though not
 necessarily to ABC). Let P, Q, R be corresponding points in each, then PQR
 is similar to each of the three triangles. (The three similar triangles drawn

 420
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 round ABC are orientated differently from those in Figure 3: the centres of
 the similarities linking them are not the vertices A, B, C.)

 ~~~~~~~A'
 At

 P P

 C B C B

 FIGURE 11

 It follows that, if a Napoleon triangle has integral angles a, ,B, y, then so
 has A"CB. If we can find P so that A"P, BP, CP make integral angles with
 the sides of A"CB, then the triangles PBC, QCA, RAB will have integral
 angles. In fact we can take any triangle as a Napoleon triangle, provided we
 allow one degenerate case.

 B

 C"

 C

 B"

 FIGURE 12
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 First, suppose PQR is not right-angled. We can take P as the
 circumcentre or orthocentre of A"CB. If P is the circumcentre we have a

 simple configuration where PBC, QCA, RAB are isosceles with base angles
 90? - a, 90? - /, 90? - y respectively.

 If all the angles of PQR are even, we may let PQR be right-angled, and
 take P as the incentre of A"CB. If PQR is right-angled and scalene with two
 odd angles, we have to let one of the external triangles, say PCB, degenerate
 into a straight line. Possibly the easiest solution is to take P as the
 circumcentre of A"CB. If the right angle is at P then A" is also a right angle,
 and P is at the midpoint of BC.

 All these are based on the apparently trivial solutions of the form
 p, q, r; p, q, r. For certain triangles we can find other configurations based
 on the special families or the adventitious solutions. However, there seems
 to be no simple way, given an arbitrary PQR, of determining whether such a
 configuration exists.
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