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INTRODUCTION 
It was a great personal privilege and experience to attend and participate as a coordinator at the 55th 
International Mathematical Olympiad (IMO), which was held from 3-13 July 2014 in Cape Town. It was 
also historic because it was the first time the IMO was held on the African continent. Here is the first 
problem written on the second day of the competition (problem no. 4):  

“The points  𝑃𝑃  and  𝑄𝑄  are chosen on the side  𝐵𝐵𝐵𝐵  of a triangle  𝐸𝐸𝐵𝐵𝐵𝐵  so 
that  ∠𝑃𝑃𝐸𝐸𝐵𝐵 = ∠𝐸𝐸𝐵𝐵𝐵𝐵  and  ∠𝑄𝑄𝐸𝐸𝐵𝐵 = ∠𝐵𝐵𝐵𝐵𝐸𝐸. The points  𝑀𝑀  and  𝑁𝑁  are taken on 
the rays  𝐸𝐸𝑃𝑃  and  𝐸𝐸𝑄𝑄, respectively, so that  𝐸𝐸𝑃𝑃 = 𝑃𝑃𝑀𝑀  and  𝐸𝐸𝑄𝑄 = 𝑄𝑄𝑁𝑁. Prove 
that the lines  𝐵𝐵𝑀𝑀  and  𝐵𝐵𝑁𝑁  intersect on the circumcircle  𝐸𝐸𝐵𝐵𝐵𝐵.” 

Note that unlike our South African matric examination papers, no diagrams are given in the IMO – learners 
are expected to draw their own. In addition, the diagrams do not count for marks; only the proofs do. 

 
FIGURE 1:  IMO 2014 problem no. 4. 

Suppose the point of intersection of the lines  𝐵𝐵𝑀𝑀  and  𝐵𝐵𝑁𝑁  is  𝐿𝐿  (see Figure 1). One of the IMO students 
from Macau observed the interesting property, en route to eventually proving the required result, that the 
products of the opposite (alternate) sides of the cyclic quadrilateral  𝐸𝐸𝐵𝐵𝐿𝐿𝐵𝐵  were equal, and hence according 
to Ptolemy’s theorem1, equal to half the product of the diagonals, i.e.  𝐸𝐸𝐵𝐵 × 𝐵𝐵𝐿𝐿 = 𝐵𝐵𝐿𝐿 × 𝐸𝐸𝐵𝐵 = 1

2
𝐸𝐸𝐿𝐿 × 𝐵𝐵𝐵𝐵. A 

dynamic geometry sketch illustrating this latter result and the original IMO problem is available at: 
http://www.dynamicmathematicslearning.com/IMO-2014-prob4.html  

                                                 
1 Ptolemy’s theorem (approx. 100 AD) states that for a cyclic quadrilateral  𝐸𝐸𝐵𝐵𝐵𝐵𝐷𝐷  the following holds true: 
𝐸𝐸𝐷𝐷 × 𝐵𝐵𝐵𝐵 + 𝐸𝐸𝐵𝐵 × 𝐵𝐵𝐷𝐷 = 𝐸𝐸𝐵𝐵 × 𝐵𝐵𝐷𝐷. 
See Man (2019) for more information or Wikipedia at: https://en.wikipedia.org/wiki/Ptolemy%27s_theorem 
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The purpose of this paper is to discuss an interesting further extension of this latter property to hexagons, 
octagons, etc. by using the same construction method to construct points similar to point  𝐿𝐿  on the other 
sides of triangle  𝐸𝐸𝐵𝐵𝐵𝐵. However, let us first present a proof of the original IMO problem as well as of the 
result about the sides and diagonals of the constructed cyclic quadrilateral  𝐸𝐸𝐵𝐵𝐿𝐿𝐵𝐵.  

PROOF OF IMO PROBLEM 

The beauty of this problem is that it can be proved in many different ways ranging from synthetic approaches 
involving similarity, Pascal's theorem, enlargement, power of a point, parallelograms, etc. to computational 
approaches involving areal or Cartesian coordinates, trigonometry, etc. The proof below using a homothetic 
(similarity) transformation, and given by some IMO students, is particularly elegant. 

Let  𝑋𝑋  and  𝑌𝑌  be the midpoints of sides  𝐸𝐸𝐵𝐵  and  𝐸𝐸𝐵𝐵  respectively, and  𝑍𝑍  the intersection of  𝑃𝑃𝑋𝑋  and  𝑄𝑄𝑌𝑌 as 
shown in Figure 1. Then  𝑃𝑃𝑋𝑋  and  𝑄𝑄𝑌𝑌  are medians of similar triangles  𝐸𝐸𝐵𝐵𝑃𝑃  and  𝐵𝐵𝐸𝐸𝑄𝑄. Thus,  ∠𝐵𝐵𝑋𝑋𝑃𝑃 =
∠𝐸𝐸𝑌𝑌𝑄𝑄  and therefore quadrilateral  𝐸𝐸𝑋𝑋𝑍𝑍𝑌𝑌  is cyclic (exterior angle equals opposite interior angle). Now the 
homothety (enlargement) with centre  𝐸𝐸  and ratio 2 maps  𝐸𝐸𝑋𝑋𝑍𝑍𝑌𝑌  to  𝐸𝐸𝐵𝐵𝐿𝐿𝐵𝐵, and completes the proof. 

PROOF OF SIDES AND DIAGONALS RELATIONSHIP OF CYCLIC  𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 

From the similar triangles  𝑃𝑃𝐵𝐵𝐸𝐸  and  𝐸𝐸𝐵𝐵𝐵𝐵  in Figure 1, we get that  𝑃𝑃𝐸𝐸 = 𝐵𝐵𝐸𝐸×𝐸𝐸𝐵𝐵
𝐵𝐵𝐵𝐵  ; hence  𝑀𝑀𝐸𝐸 =

2𝐵𝐵𝐸𝐸×𝐸𝐸𝐵𝐵
𝐵𝐵𝐵𝐵  …(1). Let  ∠𝐿𝐿𝐸𝐸𝐵𝐵 = 𝑥𝑥. From the triangle sum in triangle  𝐸𝐸𝐵𝐵𝐿𝐿, and that  ∠𝐸𝐸𝐿𝐿𝐵𝐵 = ∠𝐸𝐸𝐵𝐵𝐵𝐵  on the 

circumcircle, it follows that  ∠𝐵𝐵𝐵𝐵𝐿𝐿 = ∠𝐵𝐵𝐸𝐸𝐵𝐵 − 𝑥𝑥. But  ∠𝐵𝐵𝑃𝑃𝐸𝐸 = ∠𝐵𝐵𝐸𝐸𝐵𝐵. Therefore,  ∠𝐸𝐸𝑀𝑀𝐵𝐵 = ∠𝐵𝐵𝑃𝑃𝐸𝐸 −

∠𝐵𝐵𝐵𝐵𝐿𝐿 = 𝑥𝑥. This implies that triangles  𝐸𝐸𝐵𝐵𝐿𝐿  and  𝑀𝑀𝐵𝐵𝐸𝐸  are also similar (equiangular). Hence  𝐵𝐵𝐿𝐿
𝐴𝐴𝐿𝐿

=
𝐵𝐵𝐴𝐴
𝑀𝑀𝐴𝐴

 . 
Thus, with substitution of (1) we obtain: 

  𝐸𝐸𝐵𝐵 × 𝐵𝐵𝐿𝐿 = 𝐸𝐸𝐵𝐵 × �
𝐵𝐵𝐸𝐸 × 𝐸𝐸𝐿𝐿
𝑀𝑀𝐸𝐸

� = 𝐸𝐸𝐵𝐵 × �
𝐵𝐵𝐸𝐸 × 𝐸𝐸𝐿𝐿

1
×

𝐵𝐵𝐵𝐵
2𝐵𝐵𝐸𝐸 × 𝐸𝐸𝐵𝐵

� =
1
2
𝐸𝐸𝐿𝐿 × 𝐵𝐵𝐵𝐵   

From Ptolemy’s theorem it therefore follows that  𝐸𝐸𝐵𝐵 × 𝐵𝐵𝐿𝐿 = 𝐵𝐵𝐿𝐿 × 𝐸𝐸𝐵𝐵 = 1
2
𝐸𝐸𝐿𝐿 × 𝐵𝐵𝐵𝐵. 

EXTENSION TO CYCLIC HEXAGONS 

What happens if points  𝑁𝑁  and  𝑀𝑀  are constructed on sides  𝐸𝐸𝐵𝐵  and  𝐸𝐸𝐵𝐵, respectively, in the same way 
as  𝐿𝐿  as shown in Figure 2? 

 
FIGURE 2:  Extending the idea to cyclic hexagons. 
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As quickly confirmed by a dynamic geometry sketch we analogously obtain that the two products of the 
alternate sides of the cyclic hexagon  𝐸𝐸𝑁𝑁𝐵𝐵𝐿𝐿𝐵𝐵𝑀𝑀  are equal, as well as one eighth of the product of the main 
diagonals. In other words,  𝑁𝑁𝐵𝐵 × 𝐿𝐿𝐵𝐵 × 𝑀𝑀𝐸𝐸 = 𝐵𝐵𝐿𝐿 × 𝐵𝐵𝑀𝑀 × 𝐸𝐸𝑁𝑁 = 1

8
𝐸𝐸𝐿𝐿 × 𝐵𝐵𝑀𝑀 × 𝐵𝐵𝑁𝑁  as shown with the online 

dynamic sketch at: http://www.dynamicmathematicslearning.com/IMO2014-extension.html  

PROOF OF SIDES AND DIAGONALS RELATIONSHIP OF CYCLIC  𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 

Using the sides and diagonals result for  𝐸𝐸𝐵𝐵𝐿𝐿𝐵𝐵, we now have the following three relationships in Figure 2: 

• 𝐸𝐸𝐵𝐵 × 𝐿𝐿𝐵𝐵 = 𝐵𝐵𝐿𝐿 × 𝐸𝐸𝐵𝐵 = 1
2
𝐵𝐵𝐵𝐵 × 𝐸𝐸𝐿𝐿 … (for cyclic  𝐸𝐸𝐵𝐵𝐿𝐿𝐵𝐵) 

• 𝐵𝐵𝐵𝐵 × 𝑀𝑀𝐸𝐸 = 𝐸𝐸𝐵𝐵 × 𝐵𝐵𝑀𝑀 = 1
2
𝐸𝐸𝐵𝐵 × 𝐵𝐵𝑀𝑀 … (for cyclic  𝐸𝐸𝐵𝐵𝐵𝐵𝑀𝑀) 

• 𝐸𝐸𝐵𝐵 ×𝑁𝑁𝐵𝐵 = 𝐵𝐵𝐵𝐵 × 𝐸𝐸𝑁𝑁 = 1
2
𝐸𝐸𝐵𝐵 × 𝐵𝐵𝑁𝑁 … (for cyclic  𝑁𝑁𝐵𝐵𝐵𝐵𝐸𝐸) 

Using the first and third expressions of each of these relations we have: 

  𝐸𝐸𝐿𝐿 × 𝐵𝐵𝑀𝑀 × 𝐵𝐵𝑁𝑁 =
2𝐸𝐸𝐵𝐵 × 𝐿𝐿𝐵𝐵

𝐵𝐵𝐵𝐵
×

2𝐵𝐵𝐵𝐵 ×𝑀𝑀𝐸𝐸
𝐸𝐸𝐵𝐵

×
2𝐸𝐸𝐵𝐵 × 𝑁𝑁𝐵𝐵

𝐸𝐸𝐵𝐵
= 8(𝑁𝑁𝐵𝐵 × 𝐿𝐿𝐵𝐵 × 𝑀𝑀𝐸𝐸)   

Alternately, using the second and third expressions of each of these relations we have: 

  𝐸𝐸𝐿𝐿 × 𝐵𝐵𝑀𝑀 × 𝐵𝐵𝑁𝑁 =
2𝐵𝐵𝐿𝐿 × 𝐸𝐸𝐵𝐵

𝐵𝐵𝐵𝐵
×

2𝐸𝐸𝐵𝐵 × 𝐵𝐵𝑀𝑀
𝐸𝐸𝐵𝐵

×
2𝐵𝐵𝐵𝐵 × 𝐸𝐸𝑁𝑁

𝐸𝐸𝐵𝐵
= 8(𝐵𝐵𝐿𝐿 × 𝐵𝐵𝑀𝑀 × 𝐸𝐸𝑁𝑁)   

This proves the equality relationship between the products of the alternate sides and their relationship with 
the product of the main diagonals. 

Another interesting property of the constructed hexagon  𝐸𝐸𝑁𝑁𝐵𝐵𝐿𝐿𝐵𝐵𝑀𝑀  as shown in Figure 2 is that the main 
diagonals  𝐸𝐸𝐿𝐿,  𝐵𝐵𝑀𝑀  and  𝐵𝐵𝑁𝑁  are concurrent. This follows immediately from the following lovely theorem by 
Cartensen (2000-2001), a proof of which is provided at the end of the article as an appendix, which states 
that the main diagonals of a cyclic hexagon are concurrent if and only if the two products of alternate sides 
are equal, i.e.  𝑁𝑁𝐵𝐵 × 𝐿𝐿𝐵𝐵 × 𝑀𝑀𝐸𝐸 = 𝐵𝐵𝐿𝐿 × 𝐵𝐵𝑀𝑀 × 𝐸𝐸𝑁𝑁. This theorem also appears in Gardiner & Bradley (2005, p. 
96; 99) and also on the Math Stack Exchange (2013). 

FURTHER EXTENSION TO CYCLIC  𝟐𝟐𝟐𝟐-GONS 

If we similarly construct points  𝑂𝑂  and  𝑃𝑃  respectively in relation to triangles  𝐵𝐵𝐸𝐸𝑁𝑁  and  𝐵𝐵𝐵𝐵𝐿𝐿  and on 
opposite arcs  𝐸𝐸𝑁𝑁  and  𝐿𝐿𝐵𝐵  as shown in Figure 3, we obtain the same relationship between the alternate sides 
and the main diagonals of the formed octagon. However, in this case it is: 

  𝑂𝑂𝑃𝑃 × 𝑁𝑁𝐵𝐵 × 𝐵𝐵𝑀𝑀 × 𝐿𝐿𝐸𝐸 = 64(𝐸𝐸𝑂𝑂 × 𝑁𝑁𝐵𝐵 × 𝐿𝐿𝑃𝑃 × 𝐵𝐵𝑀𝑀) = 64(𝑂𝑂𝑁𝑁 × 𝐵𝐵𝐿𝐿 × 𝑃𝑃𝐵𝐵 × 𝑀𝑀𝐸𝐸)   

 
FIGURE 3:  Extending the idea to cyclic 2𝑛𝑛-gons. 
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By continuing to add pairs of points on opposite arcs in the same way, the result can be extended to  2𝑛𝑛-
gons in general. For example, if as illustrated in the dynamic sketch at the preceding URL, we similarly 
construct points  𝑄𝑄  and  𝑅𝑅  respectively on opposite arcs  𝐸𝐸𝑂𝑂  and  𝑃𝑃𝐿𝐿  of the octagon in Figure 3, we obtain 
the following for the formed decagon: 

  𝑄𝑄𝑅𝑅 × 𝑂𝑂𝑃𝑃 × 𝑁𝑁𝐵𝐵 × 𝐵𝐵𝑀𝑀 × 𝐿𝐿𝐸𝐸 = 1152(𝐸𝐸𝑄𝑄 × 𝑂𝑂𝑁𝑁 × 𝐵𝐵𝐿𝐿 × 𝑅𝑅𝑃𝑃 × 𝐵𝐵𝑀𝑀)  

                                                      = 1152(𝑄𝑄𝑂𝑂 ×𝑁𝑁𝐵𝐵 × 𝐿𝐿𝑅𝑅 × 𝑃𝑃𝐵𝐵 × 𝑀𝑀𝐸𝐸) 

Proofs of these last two results, and further exploration of these, as well as of other variations, are left to 
the reader. 
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APPENDIX – PROOF OF CARTENSEN’S THEOREM 

Suppose that the main diagonals of a cyclic hexagon intersect at  𝑂𝑂  as shown in Figure 4a. Then 
triangles  𝐸𝐸𝐵𝐵𝑂𝑂  and  𝐸𝐸𝐷𝐷𝑂𝑂  are similar, with  𝐴𝐴𝐵𝐵

𝐷𝐷𝐷𝐷
= 𝐴𝐴𝐴𝐴

𝐷𝐷𝐴𝐴
 . Similarly, the other two pairs of similar triangles 

give  𝐶𝐶𝐷𝐷
𝐹𝐹𝐴𝐴

= 𝐶𝐶𝐴𝐴
𝐴𝐴𝐴𝐴

  and  𝐷𝐷𝐹𝐹
𝐵𝐵𝐶𝐶

= 𝐷𝐷𝐴𝐴
𝐶𝐶𝐴𝐴

 . Multiplied together, these give the desired product. 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 4:  Proof of Cartensen’s theorem. 

Conversely, suppose the product holds, i.e.  𝑎𝑎𝑐𝑐𝑑𝑑 = 𝑎𝑎𝑐𝑐𝑑𝑑  as shown in Figure 4b. Let  𝐵𝐵𝐸𝐸  and  𝐸𝐸𝐷𝐷  intersect 
at  𝑂𝑂. Extend  𝐵𝐵𝑂𝑂  to intersect the circle at  𝐹𝐹1. From the preceding proof, we now have  𝑎𝑎𝑐𝑐𝑑𝑑1 = 𝑎𝑎𝑐𝑐𝑑𝑑1. The 
two equalities so far provide  𝑎𝑎𝑐𝑐𝑑𝑑𝑑𝑑1 = 𝑎𝑎𝑐𝑐𝑑𝑑𝑑𝑑1 = 𝑎𝑎𝑐𝑐𝑑𝑑𝑑𝑑1  which can simplify to give  𝑑𝑑𝑑𝑑1 = 𝑑𝑑𝑑𝑑1. From Ptolemy’s 
theorem on cyclic quadrilaterals on  𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹1  we get  𝑑𝑑𝑑𝑑1 = 𝑑𝑑1𝑑𝑑 + 𝐹𝐹𝐹𝐹1 × 𝐸𝐸𝐸𝐸 ⇒ 𝐹𝐹𝐹𝐹1 × 𝐸𝐸𝐸𝐸 = 0  from which we 
can conclude that  𝐹𝐹𝐹𝐹1 = 0, i.e. that  𝐵𝐵𝐹𝐹  also passes through  𝑂𝑂  as required.  
 


