ON SEQUENCES OF NESTED TRIANGLES

Dan Ismailescu (Hempstead) and Jacqueline Jacobs (Hempstead)
Hofstra University, Department of Mathematics, Hempstead, NY 11549, USA
(Received: October 24, 2005; Accepted: January 24, 2006)

Abstract

For a given triangle, we consider several sequences of nested triangles obtained via iterative procedures. We are interested in the limiting behavior of these sequences. We briefly mention the relevant known results and prove that the triangle determined by the feet of the angle bisectors converges in shape towards an equilateral one. This solves a problem raised by Trimble [15].

1. Introduction

For a given triangle T_{0} one may construct a sequence of triangles via an iterative procedure. A simple example of this type of construction is to let T_{1} be the triangle whose vertices are the midpoints of the sides of T_{0}, T_{2} be the triangle whose vertices are the midpoints of the sides of T_{1} etc. Continuing this process one obtains a nested sequence of triangles (see Figure 1).

On one hand, it is not difficult to show that, as the successive triangles become smaller, the sequence of triangles defined above converges to a limiting point, which in this case is the centroid of T_{0}.

On the other hand, as the size of the triangles gets smaller we will be interested in studying the change in their shape, that is, we will concentrate only on the angles of these triangles. It is easy to see that the midpoint construction yields a sequence

Mathematics subject classification number: 52C.
Key words and phrases: geometric iterations, limiting shape, limiting point.

Figure 1. The midpoint sequence

Figure 2. Division ratio $=s$
of similar triangles so the limiting shape is the same as the shape of the initial triangle T_{0}.

But what happens if instead of bisecting the sides of each triangle we consider some other subdivision ratio, $s \in(0,1)$? (see Figure 2). It is relatively easy to show that the limiting point is still the centroid of T_{0} but the situation can be rather complicated when it comes to the limiting shape. (a partial answer is provided in Theorem 1).

In general, given a triangle and a certain iterative process which generates a sequence of (eventually nested) triangles, there are two questions regarding the limiting behavior of this sequence we would like to answer:

Question 1. Does this triangle-sequence converge to a point? If so, what are the coordinates of this limiting point?

Question 2. Is this triangle-sequence convergent in shape? In other words, if $T_{n}=\triangle A_{n} B_{n} C_{n}$ is the n-th triangle of the sequence, what can be said about the sequences $\left\{\widehat{A}_{n}\right\}_{n \geq 0},\left\{\widehat{B}_{n}\right\}_{n \geq 0},\left\{\widehat{C}_{n}\right\}_{n \geq 0}$?

This kind of questions have been investigated by many authors including P. J. Davis, L. R. Hitt, M. de Villiers, J. G. Kingston, J. L. Synge, J. Ding and X. M. Zhang $[2,5,7,16,12,9,10]$. Constructing sequences of triangles and studying the geometry of their limits has repeatedly appeared in numerous journals and books $[1,3,8,11,13,14,15]$.

2. Summary of known results

Below we mention some of the relevant results concerning this type of problems.

Theorem 1 (Fixed division ratio construction). Let s be an arbitrary fixed number between 0 and 1. Given a triangle $T_{0}=\triangle A_{0} B_{0} C_{0}$ we consider the points A_{1} on $B_{0} C_{0}, B_{1}$ on $A_{0} C_{0}$ and C_{1} on $A_{0} B_{0}$ such that

$$
\frac{B_{0} A_{1}}{A_{1} C_{0}}=\frac{C_{0} B_{1}}{B_{1} A_{0}}=\frac{A_{0} C_{1}}{C_{1} B_{0}}=\frac{s}{1-s} .
$$

Define a new triangle $T_{1}=\triangle A_{1} B_{1} C_{1}$. By repeating this construction we obtain a nested sequence of triangles $\left\{T_{n}=\triangle A_{n} B_{n} C_{n}\right\}_{n \geq 0}$ (see Figure 2).
a) $\left\{T_{n}\right\}_{n \geq 0}$ converges to the centroid of T_{0}, as $n \rightarrow \infty$.
b) Let

$$
\theta=\cos ^{-1}\left[-1+\frac{1}{2\left(1-3 s+3 s^{2}\right)}\right] .
$$

If $\theta=(p / q) \pi$ where p and q are positive integers, then the shape sequence is periodical. More precisely, for every $k \geq 0$ triangles $\triangle A_{k} B_{k} C_{k}$ and $\triangle A_{k+2 q} B_{k+2 q} C_{k+2 q}$ are similar.

Although we were not able to locate a reference for this problem, we doubt that the result is new. We leave the straightforward proof as an exercise.

Another construction belonging to the same class is mentioned below.
Theorem 2 ($[10,14]$ The incircle-circumcircle construction). Given a triangle $T_{0}=\triangle A_{0} B_{0} C_{0}$ label by A_{1}, B_{1}, C_{1} the points where the incircle of T_{0} touches the sides $B_{0} C_{0}, C_{0} A_{0}$ and $A_{0} B_{0}$, respectively. Consider the new triangle $T_{1}=\triangle A_{1} B_{1} C_{1}$ (see Figure 3). Similarly we can form $T_{2}=\triangle A_{2} B_{2} C_{2}$

Figure 3. The incircle-circumcircle sequence
using $\triangle A_{1} B_{1} C_{1}$. Continuing in this fashion we construct the sequence $\left\{T_{n}=\right.$ $\left.\triangle A_{n} B_{n} C_{n}\right\}_{n \geq 0}$. Then, as $n \rightarrow \infty, T_{n}$ converges (in shape) towards an equilateral triangle.

Proof. (Sketch)
It is easy to show that the angles of T_{1} depend linearly on the angles of T_{0}. More precisely,

$$
\begin{aligned}
{\left[\begin{array}{l}
\widehat{A}_{1} \\
\widehat{B}_{1} \\
\widehat{C}_{1}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\widehat{A}_{0} \\
\widehat{B}_{0} \\
\widehat{C}_{0}
\end{array}\right], \text { which by induction gives that } } \\
\lim _{n \rightarrow \infty}\left[\begin{array}{l}
\widehat{A}_{n} \\
\widehat{B}_{n} \\
\widehat{C}_{n}
\end{array}\right] & =\lim _{n \rightarrow \infty}\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]^{n} \cdot\left[\begin{array}{l}
\widehat{A}_{0} \\
\widehat{B}_{0} \\
\widehat{C}_{0}
\end{array}\right] \\
= & {\left[\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] \cdot\left[\begin{array}{l}
\widehat{A}_{0} \\
\widehat{B}_{0} \\
\widehat{C}_{0}
\end{array}\right]=\left[\begin{array}{l}
\pi / 3 \\
\pi / 3 \\
\pi / 3
\end{array}\right] }
\end{aligned}
$$

Therefore the limiting shape is an equilateral triangle.
It is interesting to note that the triangle sequence $\left\{T_{n}\right\}_{n \geq 0}$ defined above has also a limiting point. (the radius of each new circle is at most half the radius of the previous circle). In fact, this limit point is called the Poncelet point of the initial triangle T_{0}. Synge (see [6], problem B25) asks whether this can be specified in finite terms (i.e., by a formula involving the vertices of T_{0}). We do not know the answer to this question.

Figure 4. A second construction using the incircle

A similar problem with the one above appeared in [10].
Theorem 3 (Another incircle construction). Given an arbitrary triangle $T_{0}=\triangle A_{0} B_{0} C_{0}$ with incenter I denote by A_{1}, B_{1}, C_{1} the points where the line segments $A_{0} I, B_{0} I$ and $C_{0} I$ respectively intersect the incircle of T_{0}. Define the new triangle $T_{1}=\triangle A_{1} B_{1} C_{1}$ (see Figure 4). In the same way, we can construct $T_{2}=\triangle A_{2} B_{2} C_{2}, \cdots, T_{n}=\triangle A_{n} B_{n} C_{n} \cdots$. The limiting shape of the triangle sequence $\left\{T_{n}\right\}_{n \geq 0}$, as $n \rightarrow \infty$ is an equilateral triangle.

Proof. (Sketch)
As in the previous problem there is a simple linear dependence between the angles of T_{1} and those of T_{0}.

$$
\begin{aligned}
{\left[\begin{array}{l}
\widehat{A_{1}} \\
\widehat{B_{1}} \\
\widehat{C_{1}}
\end{array}\right]=} & {\left[\begin{array}{lll}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 2 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right] \cdot\left[\begin{array}{l}
\widehat{A_{0}} \\
\widehat{\widehat{B}_{0}} \\
\widehat{C_{0}}
\end{array}\right], \text { which again by induction gives that } } \\
\lim _{n \rightarrow \infty}\left[\begin{array}{l}
\widehat{A}_{n} \\
\widehat{B}_{n} \\
\widehat{C}_{n}
\end{array}\right] & =\lim _{n \rightarrow \infty}\left[\begin{array}{lll}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 2 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right]^{n} \cdot\left[\begin{array}{l}
\widehat{A}_{0} \\
\widehat{B}_{0} \\
\widehat{C}_{0}
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] \cdot\left[\begin{array}{l}
\widehat{A}_{0} \\
\widehat{B}_{0} \\
\widehat{C}_{0}
\end{array}\right]=\left[\begin{array}{l}
\pi / 3 \\
\pi / 3 \\
\pi / 3
\end{array}\right] .
\end{aligned}
$$

As in the previous case, the limiting shape is an equilateral triangle. Moreover, it can be easily shown that $\left\{T_{n}\right\}_{n \geq 0}$ converges to a point but again, we are unable to express the position of this limiting point in finite terms.

The next result is attributed to Neuberg - see e.g. [5, 14, 16].
Theorem 4 (Neuberg). Let $T_{0}=\triangle A_{0} B_{0} C_{0}$ be an arbitrary triangle and let P be a point inside the triangle. Drop the perpendiculars from the point P onto the lines, $A_{0} B_{0}, A_{0} C_{0}$ and $B_{0} C_{0}$. We label the points of intersection C_{1}, B_{1} and A_{1}, respectively. We can now form a new triangle, $T_{1}=\triangle A_{1} B_{1} C_{1}$. Similarly, we drop the perpendiculars from P onto $A_{1} B_{1}, A_{1} C_{1}$ and $B_{1} C_{1}$. We label the points of intersection C_{2}, B_{2} and A_{2}, respectively. Thus, we can form $T_{2}=\triangle A_{2} B_{2} C_{2}$ - see Figure 5. Finally, we construct triangle $T_{3}=\triangle A_{3} B_{3} C_{3}$ in a similar manner.

Then, triangle $\triangle A_{0} B_{0} C_{0}$ is similar to triangle $\triangle A_{3} B_{3} C_{3}$.
We include the short proof.

Proof. Draw the lines from A_{0} to P, B_{0} to P and C_{0} to P. P lies on the circumcircles of the following triangles: $\triangle A_{0} B_{1} C_{1}, \triangle A_{2} B_{1} C_{2}, \triangle A_{3} B_{3} C_{2}, \triangle A_{2} B_{2} C_{1}$, and $\triangle A_{3} B_{2} C_{3}$. Thus we have

$$
\widehat{C_{1} A_{0} P}=\widehat{C_{1} B_{1} P}=\widehat{A_{2} B_{1} P}=\widehat{A_{2} C_{2} P}=\widehat{B_{3} C_{2} P}=\widehat{B_{3} A_{3} P}
$$

and

$$
\widehat{P A_{0} B_{1}}=\widehat{P C_{1} B_{1}}=\widehat{P C_{1} A_{2}}=\widehat{P B_{2} A_{2}}=\widehat{P B_{2} C_{3}}=\widehat{P A_{3} C_{3}}
$$

Thus

$$
\widehat{A_{0}}=\widehat{C_{1} A_{0} P}+\widehat{P A_{0} B_{1}}=\widehat{B_{3} A_{3} P}+\widehat{P A_{3} C_{3}}=\widehat{A_{3}} .
$$

Similarly, $\widehat{B_{0}}=\widehat{B_{3}}$. Therefore by angle-angle, $\triangle A_{0} B_{0} C_{0}$ and $\triangle A_{3} B_{3} C_{3}$ are similar.

Corollary. Suppose we continue constructing the triangles T_{4}, T_{5}, \ldots in the manner described in the statement of the Theorem 4. Then, the above proof implies that the shape sequence of $\left\{T_{n}\right\}_{n \geq 0}$ is periodical of period 3 .

Let us note that depending on the shape of the initial triangle as well as the position of point P the triangle sequence in the problem above must not be necessarily nested.

The following problem has been studied in [12].
Definition. The pedal triangle of a given triangle $\triangle A B C$ is the triangle whose vertices are the feet of altitudes from A, B and C.

It is therefore natural to consider
The pedal triangle construction: Given any triangle $T_{0}=\triangle A_{0} B_{0} C_{0}$ define $T_{1}=\triangle A_{1} B_{1} C_{1}$ to be the pedal triangle of $T_{1}-$ see Figure 6.

Iterating this procedure, we define T_{n+1} to be the pedal triangle of T_{n}. Note that this is not necessarily a nested triangle sequence. The same questions regarding the limiting behavior of $\left\{T_{n}\right\}_{n \geq 0}$ can be asked.

Kingston and Synge found in [12] necessary and sufficient conditions for the shape-sequence of $\left\{T_{n}\right\}_{n \geq 0}$ to be periodical for any given period, p. Moreover, they showed that there are triangles T_{0} for which the periodicity phenomenon appears only after an arbitrarily large number of iterations (they call this periodicity with delay).

In other words, they show that given any positive integers p and d, there is a choice for T_{0} such that no two triangles in the list $\left\{T_{0}, T_{1}, \ldots, T_{d}\right\}$ are similar to each other but T_{k} is similar to T_{k+p} for every $k \geq d$. We thus encounter in this case a somewhat similar situation to the one mentioned in the fixed division ratio construction.

We finally got to the problem that represents the main goal of this paper.
What if the vertices of triangle T_{n+1} are the feet of the angle bisectors of T_{n} for every $n \geq 0$? Trimble [15] has shown that if T_{0} is isosceles then the limiting shape is that of an equilateral triangle. No proof has been published for the case when T_{0} is an arbitrary triangle. We present such a proof in the next section.

3. Triangles formed by angle bisectors

Problem. Let T_{0} be an arbitrary triangle with vertices A_{0}, B_{0} and C_{0}, and let T_{1} be the triangle formed by the intersection points of the angle bisectors of T_{0} on its three sides (see Figure 7). Construct T_{2}, T_{3}, \cdots in the same manner.

We will prove the following
Theorem 5. The sequence $\left\{T_{n}\right\}_{n \geq 0}$ converges (in shape) to an equilateral triangle.

Observation. As mentioned above, Trimble [15] proved the above theorem for the special case when T_{0} is an isosceles triangle. We will present a simpler proof of this particular case. The main difficulty in proving the general statement is that there is no linear recurrence relationship between the angles of T_{n} and the angles of T_{n+1} (as it happened in Theorems 2 and 3, for instance).

The proof of Theorem 5 will consist of a sequence of lemmata - some of which are rather computationally involved. We used Maple to perform and check these calculations.

Notation. Let a_{n}, b_{n}, c_{n} denote the lengths of the sides $B_{n} C_{n}, C_{n} A_{n}$ and $A_{n} B_{n}$ respectively.

We will first express c_{n+1} in terms of a_{n}, b_{n} and c_{n}.
By the angle bisector theorem in triangle $A_{n} B_{n} C_{n}$ we have that

$$
\frac{B_{n} A_{n+1}}{A_{n+1} C_{n}}=\frac{A_{n} B_{n}}{A_{n} C_{n}}=\frac{c_{n}}{b_{n}}
$$

from which by using derived proportions we obtain

$$
\begin{equation*}
C_{n} A_{n+1}=\frac{a_{n} b_{n}}{b_{n}+c_{n}} \tag{1}
\end{equation*}
$$

Similarly, it can be shown that

$$
\begin{equation*}
C_{n} B_{n+1}=\frac{a_{n} b_{n}}{a_{n}+c_{n}} \tag{2}
\end{equation*}
$$

Using now the cosine rule in $\triangle A_{n+1} B_{n+1} C_{n}$ we have that

$$
A_{n+1} B_{n+1}^{2}=C_{n} A_{n+1}^{2}+C_{n} B_{n+1}^{2}-2 \cdot C_{n} A_{n+1} \cdot C_{n} B_{n+1} \cdot \cos \widehat{C_{n}}
$$

which after using the notation introduced above as well as (1) and (2) becomes

$$
c_{n+1}^{2}=\frac{a_{n}^{2} b_{n}^{2}}{\left(a_{n}+c_{n}\right)^{2}}+\frac{a_{n}^{2} b_{n}^{2}}{\left(b_{n}+c_{n}\right)^{2}}-2 \frac{a_{n}^{2} b_{n}^{2}}{\left(a_{n}+c_{n}\right)\left(b_{n}+c_{n}\right)} \cos \widehat{C_{n}} .
$$

But if we use the cosine rule in $\triangle A_{n} B_{n} C_{n}$, we get

$$
\cos \widehat{C_{n}}=\frac{b_{n}^{2}+a_{n}^{2}-c_{n}^{2}}{2 a_{n} b_{n}}
$$

Thus

$$
c_{n+1}^{2}=\frac{a_{n}^{2} b_{n}^{2}}{\left(a_{n}+c_{n}\right)^{2}}+\frac{a_{n}^{2} b_{n}^{2}}{\left(b_{n}+c_{n}\right)^{2}}-\frac{a_{n} b_{n}\left(b_{n}^{2}+a_{n}^{2}-c_{n}^{2}\right)}{\left(a_{n}+c_{n}\right)\left(b_{n}+c_{n}\right)} .
$$

Figure 7. T_{1} is determined by the feet of the angle bisectors of T_{0}

Similarly,

$$
\begin{equation*}
a_{n+1}^{2}=\frac{b_{n}^{2} c_{n}^{2}}{\left(a_{n}+b_{n}\right)^{2}}+\frac{b_{n}^{2} c_{n}^{2}}{\left(a_{n}+c_{n}\right)^{2}}-\frac{b_{n} c_{n}\left(b_{n}^{2}+c_{n}^{2}-a_{n}^{2}\right)}{\left(a_{n}+b_{n}\right)\left(a_{n}+c_{n}\right)} \tag{3}
\end{equation*}
$$

and

$$
b_{n+1}^{2}=\frac{c_{n}^{2} a_{n}^{2}}{\left(b_{n}+c_{n}\right)^{2}}+\frac{c_{n}^{2} a_{n}^{2}}{\left(a_{n}+b_{n}\right)^{2}}-\frac{c_{n} a_{n}\left(c_{n}^{2}+a_{n}^{2}-b_{n}^{2}\right)}{\left(b_{n}+c_{n}\right)\left(a_{n}+b_{n}\right)} .
$$

ObSERVATION. The recurrence relations above do not seem to be particularly simple. However, if the initial triangle T_{0} is isosceles the problem is readily solved.

Theorem 6 (The Isosceles Case). If we repeatedly take the angle bisectors of an isosceles triangle, the resulting sequence of triangles $\left\{\triangle A_{n} B_{n} C_{n}\right\}_{n=0}^{\infty}$, converges in shape towards an equilateral triangle.

Proof. Let us suppose that T_{0} is isosceles; assume for instance that $b_{0}=c_{0}$. Using the recurrence relations (3), a straightforward induction reasoning implies that $b_{n}=c_{n}$ for all $n \geq 0$.

Then, using (3) we can rewrite a_{n+1}^{2} and b_{n+1}^{2} as follows

$$
a_{n+1}^{2}=\frac{a_{n}^{2} b_{n}^{2}}{\left(a_{n}+b_{n}\right)^{2}}
$$

and

$$
b_{n+1}^{2}=\frac{a_{n}^{2}\left(5 b_{n}^{2}-a_{n}^{2}\right)}{4\left(a_{n}+b_{n}\right)^{2}}
$$

Combining the last two equalities we obtain that

$$
\frac{a_{n+1}^{2}}{b_{n+1}^{2}}=\frac{4 b_{n}^{2}}{5 b_{n}^{2}-a_{n}^{2}}
$$

Obviously, it would suffice to show that the ratio $d_{n}:=a_{n}^{2} / b_{n}^{2}$ tends to 1 as n approaches infinity. The last equation can be written as

$$
\begin{equation*}
d_{n+1}=\frac{4}{5-d_{n}} \tag{4}
\end{equation*}
$$

where $0<d_{0}<4$, the last inequality being a consequence of the triangle inequality $a_{0}<b_{0}+c_{0}=2 b_{0}$.

Obviously, for every $n \geq 0$ we have $0<d_{n}<4$. Moreover, it can be easily shown that $\left\{d_{n}\right\}_{n \geq 0}$ is monotonic (strictly increasing if $d_{0}<1$, strictly decreasing if $d_{0}>1$ and constant if $\left.d_{0}=1\right)$. This can be shown using the fact that $d_{n+1}=f\left(d_{n}\right)$ where $f(x)=4 /(5-x)$. We skip the simple induction in favor of presenting a "picture proof" - see Figure 8.

Figure 8. $\left\{d_{n}\right\}_{n \geq 0}$ is decreasing and convergent to 1 when $d_{0}>1$

Therefore, $\left\{d_{n}\right\}_{n \geq 0}$ is bounded and monotonic, and therefore convergent. Passing to the limit in the recurrence relationship (4) we have that

$$
L=\frac{4}{5-L} \quad \text { where } \quad L:=\lim _{n \rightarrow \infty} d_{n}
$$

from which $L^{2}-5 L+4=(L-1)(L-4)=0$. But $L \neq 4$ since from the Figure 8 above we can easily see that $d_{n} \leq \max \left\{1, d_{0}\right\}<4$. Therefore, $L=1$ and the proof is complete.

We now return to the case when $\triangle A_{0} B_{0} C_{0}$ is an arbitrary triangle. We start with the following

Lemma 1. If $c_{0}=\max \left\{a_{0}, b_{0}, c_{0}\right\}$ then $c_{n}=\max \left\{a_{n}, b_{n}, c_{n}\right\}$ for every $n \geq 0$.
Proof. Induction on n. Consider the difference $c_{n+1}^{2}-a_{n+1}^{2}$. From (3) after
some simplifications it follows that

$$
\begin{align*}
& c_{n+1}^{2}-a_{n+1}^{2} \tag{5}\\
& =\frac{a_{n} b_{n} c_{n}\left(c_{n}-a_{n}\right) \cdot\left[\left(c_{n}^{2}-b_{n}^{2}\right)\left(a_{n}+b_{n}+c_{n}\right)+a_{n}\left(a_{n}+b_{n}\right)\left(a_{n}+c_{n}\right)\right]}{\left(a_{n}+b_{n}\right)^{2}\left(b_{n}+c_{n}\right)^{2}\left(a_{n}+c_{n}\right)}
\end{align*}
$$

Since by the induction hypothesis $c_{n} \geq a_{n}$ and $c_{n} \geq b_{n}$, every factor in the right hand side of the above equation is nonnegative. Hence, $c_{n+1} \geq a_{n+1}$. Analogously, it can be shown that $c_{n+1} \geq b_{n+1}$. This ends the induction proof.

Notation. Define the sequences $\left\{r_{n}\right\}_{n \geq 0}$ and $\left\{s_{n}\right\}_{n \geq 0}$ by

$$
r_{n}:=\frac{a_{n}^{2}}{c_{n}^{2}} ; \quad s_{n}:=\frac{b_{n}^{2}}{c_{n}^{2}}
$$

Clearly, by the above lemma we have that $0<r_{n}, s_{n} \leq 1$ for all $n \geq 0$. Obviously, for proving Theorem 5 it would suffice to show that these two sequences converge to 1 . However, at this point it is not clear whether $\left\{r_{n}\right\}_{n \geq 0}$ and $\left\{s_{n}\right\}_{n \geq 0}$ are convergent. Moreover, these sequences need not be monotonic, fact which makes our proof more laborious.

We need two technical results.
LEMMA 2. Let $t_{n}=\left(r_{n}-s_{n}\right)^{2}$. Then $\lim _{n \rightarrow \infty} t_{n}=0$.

Proof. Clearly, $0 \leq t_{n}<1$ for every $n \geq 0$. We will show that

$$
\begin{equation*}
t_{n+1} \leq \frac{t_{n}+t_{n}^{2}}{2} \quad \text { for every } \quad n \geq 0 \tag{6}
\end{equation*}
$$

For now, assume (6) holds true. Then we obtain

$$
t_{n+1} \leq \frac{t_{n}+t_{n}^{2}}{2} \leq \frac{t_{n}+t_{n}}{2}=t_{n}
$$

that is, $\left\{t_{n}\right\}_{n \geq 0}$ is decreasing and bounded, therefore it converges to some limit $l \in[0,1]$. If we pass to the limit in (6) it follows that

$$
\lim _{n \rightarrow \infty} t_{n+1} \leq \lim _{n \rightarrow \infty} \frac{t_{n}+t_{n}^{2}}{2} \Longrightarrow l \leq \frac{l+l^{2}}{2}
$$

So,

$$
l(1-l) \leq 0 \Longrightarrow l=0 \text { or } l=1
$$

But $l \neq 1$, or else $t_{0}=1$ since the sequence is decreasing. But this means that $\left(r_{0}-s_{0}\right)^{2}=1$, that is, either r_{0} or s_{0} is equal to 0 , which is impossible since we started with a non-degenerate triangle T_{0}. Thus $l=0$ and therefore $\left|r_{n}-s_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.

It remains to prove inequality (6). Denote $a_{n}=c_{n}-u$ and $b_{n}=c_{n}-v$. Since c_{n} is greater than both a_{n} and b_{n} it follows that $u, v \geq 0$. By the triangle inequality, $a_{n}+b_{n}-c_{n}=w>0$. Hence,

$$
\begin{equation*}
a_{n}=v+w, b_{n}=u+w \quad \text { and } \quad c_{n}=u+v+w . \tag{7}
\end{equation*}
$$

Substituting now (7) into the expression $\frac{t_{n}+t_{n}^{2}}{2}-t_{n+1}$ we obtain that

$$
\begin{equation*}
\frac{t_{n}+t_{n}^{2}}{2}-t_{n+1}=\frac{P_{1}(u, v, w)}{Q_{1}(u, v, w)} \tag{8}
\end{equation*}
$$

where $P_{1}(u, v, w)$ and $Q_{1}(u, v, w)$ are polynomials of degree 16 in the nonnegative variables u, v and w taking only nonnegative values. Hence, $\frac{t_{n}+t_{n}^{2}}{2}-t_{n+1} \geq 0$ which proves (6) and with it the entire Lemma 2.

The second intermediate result we need is given in the following
LEmma 3. Let $x_{n}=\min \left\{r_{n}, s_{n}\right\}=\frac{1}{2} \cdot\left(r_{n}+s_{n}-\left|r_{n}-s_{n}\right|\right)$. Then the sequence $\left\{x_{n}\right\}_{n \geq 0}$ is convergent.

Proof. Obviously, $0<x_{n} \leq 1$ for all $n \geq 0$ so the sequence is bounded. We will show that $\left\{x_{n}\right\}_{n \geq 0}$ is increasing from which the result stated above will follow.

Without loss of generality suppose that for a given $n, x_{n}=\min \left\{r_{n}, s_{n}\right\}=r_{n}$. We want to show that $x_{n+1} \geq x_{n}$, which is equivalent in this case to proving that $r_{n+1} \geq r_{n}$ and $s_{n+1} \geq r_{n}$.

Let us use the same notations (7) from the previous lemma.
It is easily shown that $r_{n}-s_{n}=(v-u)(v+u+2 w) /(u+v+w)^{2}$. The assumption that $r_{n} \leq s_{n}$, implies that $v \leq u$.

Let us denote $u=v+z$, where $z \geq 0$. Then equalities in (7) become

$$
\begin{equation*}
a_{n}=v+w, b_{n}=v+w+z \quad \text { and } \quad c_{n}=2 v+w+z \tag{9}
\end{equation*}
$$

Using now (9), a straightforward MAPLE computation gives that

$$
\begin{equation*}
r_{n+1}-r_{n}=\frac{P_{2}(v, w, z)}{Q_{2}(v, w, z)} \geq 0 \tag{10}
\end{equation*}
$$

since both $P_{2}(v, w, z)$ and $Q_{2}(v, w, z)$ are polynomials of degree 7 in the nonnegative variables v, w and z having all coefficients positive.

Similarly, using again (9), we obtain that

$$
\begin{equation*}
s_{n+1}-r_{n}=\frac{P_{3}(v, w, z)}{Q_{3}(v, w, z)} \geq 0 \tag{11}
\end{equation*}
$$

since $P_{3}(v, w, z)$ and $Q_{3}(v, w, z)$ are polynomials of degree 7 in the nonnegative variables v, w and z having all coefficients positive.

It follows that if $x_{n}=r_{n}$ then $x_{n+1} \geq x_{n}$. The case when $x_{n}=s_{n}$ is treated similarly. This finishes the proof of lemma 3 .

We are now in position to prove Theorem 5.
By lemmata 2 and 3, we have that both sequences $\left\{r_{n}+s_{n}\right\}_{n \geq 0}$ and $\left\{r_{n}-\right.$ $\left.s_{n}\right\}_{n \geq 0}$ do converge and the second one converges to 0 . Therefore both sequences $\left\{r_{n}\right\}$ and $\left\{s_{n}\right\}$ converge to the same limit and hence the sequences defined by the general terms

$$
R_{n}=\sqrt{r_{n}}=a_{n} / c_{n} \quad \text { and } \quad S_{n}=\sqrt{s_{n}}=b_{n} / c_{n}
$$

converge to a common limit, Λ. Recall that we would like to show that $\Lambda=1$.
Using the equations from (3) we derive the following equality

$$
\begin{align*}
& R_{n+1}^{2} \tag{12}\\
& =\frac{-\left(S_{n}+1\right)^{2}\left(-S_{n}^{3}-R_{n} S_{n}^{2}+S_{n}^{2}+3 R_{n} S_{n}+S_{n}+R_{n}^{2} S_{n}-1+R_{n}^{3}+R_{n}^{2}-R_{n}\right)}{\left(R_{n}^{3}+R_{n}^{2}-R_{n}^{2} S_{n}-3 R_{n} S_{n}-R_{n} S_{n}^{2}-R_{n}+S_{n}^{2}-S_{n}+S_{n}^{3}-1\right)\left(R_{n}+S_{n}\right)^{2}}
\end{align*}
$$

We know that $\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} S_{n}=\Lambda$ so by passing to the limit in (12) we get that

$$
\Lambda^{2}=\frac{\left(5 \Lambda^{2}-1\right)(1+\Lambda)^{2}}{4 \Lambda^{2}(1+\Lambda)^{2}}=\frac{5 \Lambda^{2}-1}{4 \Lambda^{2}}
$$

which readily implies that either $\Lambda=1 / 2$ or $\Lambda=1$.
We still have to eliminate the first possibility. Notice that if $\Lambda=1 / 2$ then the limiting triangle would be a flat isosceles triangle.

Consider the following sequence

$$
g_{n}:=\frac{16 A_{n}^{2}}{c_{n}^{4}}
$$

where A_{n} denotes the area of the $n^{\text {th }}$ triangle and c_{n} is the side of maximum length (see Lemma 1).

From Heron's formula is easy to deduce that

$$
16 A_{n}^{2}=-a_{n}^{4}-b_{n}^{4}-c_{n}^{4}+2 a_{n}^{2} b_{n}^{2}+2 a_{n}^{2} c_{n}^{2}+2 b_{n}^{2} c_{n}^{2}
$$

which immediately implies that

$$
\begin{equation*}
g_{n}=-r_{n}^{2}-s_{n}^{2}-1+2 r_{n} s_{n}+2 r_{n}+2 s_{n} . \tag{13}
\end{equation*}
$$

Clearly, since $\left\{r_{n}\right\}_{n \geq 0}$ and $\left\{s_{n}\right\}_{n \geq 0}$ are convergent then the sequence $\left\{g_{n}\right\}_{n \geq 0}$ is convergent, too. Notice that if $\Lambda=1 / 2$ then $\lim _{n \rightarrow \infty} g_{n}=0$. However, we will prove below that this is impossible.

The proof of Theorem 5 will be finished as soon as we manage to show
Lemma 4. The sequence $\left\{g_{n}\right\}_{n \geq 0}$ is increasing.

Proof. We will use the same approach as in Lemma 2. Denote $a_{n}=c_{n}-u$ and $b_{n}=c_{n}-v$. Since c_{n} is greater than both a_{n} and b_{n} it follows that $u, v \geq 0$. By the triangle inequality, $a_{n}+b_{n}-c_{n}=w>0$. Hence, $a_{n}=v+w, b_{n}=u+w$ and $c_{n}=u+v+w$. Substituting now a_{n}, b_{n}, c_{n} into the expression of g_{n} we obtain that

$$
\begin{equation*}
g_{n+1}-g_{n}=\frac{P_{4}(u, v, w)}{Q_{4}(u, v, w)} \tag{14}
\end{equation*}
$$

where $P_{4}(u, v, w)$ and $Q_{4}(u, v, w)$ are polynomials of degree 12 in the nonnegative variables u, v, w having all coefficients positive. It follows the $\left\{g_{n}\right\}_{n \geq 0}$ is an increasing sequence.

Since $\left\{g_{n}\right\}$ is increasing and has only positive terms it cannot converge to 0 . This means that $\Lambda=1$ therefore the limiting triangle is equilateral. The proof of Theorem 5 is now complete.

4. Open problems

It seems that finding the limiting point of a certain iterative geometric process is a much more difficult problem than the one concerning the limiting shape. In particular, we would be interested in finding these limiting points in the cases of the incircle-circumcircle sequence (the Poncelet point that is) and in the case of the last construction (triangles determined by the angle bisectors). Also, it would be interesting to find all values of the division ratio $0<s<1$ for which the triangle sequence constructed as in Theorem 1 is divergent (in shape).

References

[1] Steve Abbot, Average sequences and triangles, Math. Gaz. 80 (1996), 222-224.
[2] Geng Zhe Chang and Phillip J. Davis, Iterative processes in elementary geometry, Amer. Math. Monthly 90 (1983), no. 7, 421-431.
[3] Geng Zhe Chang and Thomas W. Sederberg, Over and over again, New Mathematical Library, no. 39, Mathematical Association of America, Washington DC, 1997.
[4] R. J. Clarke, Sequences of polygons, Math. Mag. 90 (1979), no. 2, 102-105.
[5] H. S. M. Coxeter and S. L. Greitzer, Geometry revisited, Mathematical Association of America, Washington D.C., 1967, 22-26.
[6] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved problems in geometry, Problem books in mathematics - Unsolved problems in intuitive mathematics, II, Springer-Verlag, New York, 1994.
[7] Phillip J. Davis, Cyclic transformations of polygons and the generalized inverse, Canad. J. Math. 29 (1977), no. 4, 756-770.
[8] Phillip J. Davis, Circulant matrices, Wiley-Interscience Publication, Pure and Applied Mathematics, John Wiley and Son, New York, Chichester, Brisbane, 1979.
[9] Jiu Ding, L. Richard Hitt and Xin-Min Zhang, Markov chains and dynamic geometry of polygons, Linear Algebra and Its Applications 367 (2003), 255-270.
[10] L. Richard Hitt and Xin-Min Zhang, Dynamic geometry of polygons, Elem. Math. 56 (2001), no. 1, 21-37.
[11] Stephen Jones, Two iteration examples, Math. Gaz. 74 (1990), 58-62.
[12] John G. Kingston and John L. Synge, The sequence of pedal triangles, Amer. Math. Monthly 95(1988), no. 7, 609-620.
[13] D. S. Macnab, Cyclic polygons and related questions, Math. Gaz. 65 (1981), no. 431, 22-28.
[14] B. M. Stewart, Cyclic Properties of Miguel Polygons, Amer. Math. Monthly 47 (Aug.-Sep., 1940), no. 7, 462-466.
[15] S. Y. Trimble, The limiting case of triangles formed by angle bisectors, Amer. Math. Gaz. 80 (1996), no. 489, 554-556.
[16] M. De Villiers, From nested Miguel triangles to Miguel distances, Math. Gaz. 86 (2002), no. 507, 390-395.

