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Abstract

For a given triangle, we consider several sequences of nested triangles
obtained via iterative procedures. We are interested in the limiting behavior
of these sequences. We briefly mention the relevant known results and prove
that the triangle determined by the feet of the angle bisectors converges in
shape towards an equilateral one. This solves a problem raised by Trimble [15].

1. Introduction

For a given triangle T0 one may construct a sequence of triangles via an
iterative procedure. A simple example of this type of construction is to let T1 be
the triangle whose vertices are the midpoints of the sides of T0, T2 be the triangle
whose vertices are the midpoints of the sides of T1 etc. Continuing this process one
obtains a nested sequence of triangles (see Figure 1).

On one hand, it is not difficult to show that, as the successive triangles become
smaller, the sequence of triangles defined above converges to a limiting point, which
in this case is the centroid of T0.

On the other hand, as the size of the triangles gets smaller we will be interested
in studying the change in their shape, that is, we will concentrate only on the angles
of these triangles. It is easy to see that the midpoint construction yields a sequence
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Figure 1. The midpoint sequence

Figure 2. Division ratio = s

of similar triangles so the limiting shape is the same as the shape of the initial
triangle T0.

But what happens if instead of bisecting the sides of each triangle we consider
some other subdivision ratio, s ∈ (0, 1)? (see Figure 2). It is relatively easy to show
that the limiting point is still the centroid of T0 but the situation can be rather
complicated when it comes to the limiting shape. (a partial answer is provided in
Theorem 1).

In general, given a triangle and a certain iterative process which generates
a sequence of (eventually nested) triangles, there are two questions regarding the
limiting behavior of this sequence we would like to answer:
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Question 1. Does this triangle-sequence converge to a point? If so, what
are the coordinates of this limiting point?

Question 2. Is this triangle-sequence convergent in shape? In other words,
if Tn = "AnBnCn is the n-th triangle of the sequence, what can be said about the
sequences {Ân}n≥0, {B̂n}n≥0,{Ĉn}n≥0?

This kind of questions have been investigated by many authors including P. J.
Davis, L. R. Hitt, M. de Villiers, J. G. Kingston, J. L. Synge, J. Ding and X. M.
Zhang [2, 5, 7, 16, 12, 9, 10]. Constructing sequences of triangles and studying the
geometry of their limits has repeatedly appeared in numerous journals and books
[1, 3, 8, 11, 13, 14, 15].

2. Summary of known results

Below we mention some of the relevant results concerning this type of prob-
lems.

Theorem 1 (Fixed division ratio construction). Let s be an arbitrary
fixed number between 0 and 1. Given a triangle T0 = "A0B0C0 we consider the
points A1 on B0C0, B1 on A0C0 and C1 on A0B0 such that

B0A1

A1C0
=

C0B1

B1A0
=

A0C1

C1B0
=

s

1 − s
.

Define a new triangle T1 = "A1B1C1. By repeating this construction we
obtain a nested sequence of triangles {Tn = "AnBnCn}n≥0 (see Figure 2).

a) {Tn}n≥0 converges to the centroid of T0, as n → ∞.
b) Let

θ = cos−1

[
−1 +

1
2(1 − 3s + 3s2)

]
.

If θ = (p/q)π where p and q are positive integers, then the shape sequence is
periodical. More precisely, for every k ≥ 0 triangles "AkBkCk and
"Ak+2qBk+2qCk+2q are similar.

Although we were not able to locate a reference for this problem, we doubt
that the result is new. We leave the straightforward proof as an exercise.

Another construction belonging to the same class is mentioned below.

Theorem 2 ([10, 14] The incircle-circumcircle construction). Given
a triangle T0 = "A0B0C0 label by A1, B1, C1 the points where the incircle of
T0 touches the sides B0C0, C0A0 and A0B0, respectively. Consider the new tri-
angle T1 = "A1B1C1 (see Figure 3). Similarly we can form T2 = "A2B2C2
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Figure 3. The incircle-circumcircle sequence

using "A1B1C1. Continuing in this fashion we construct the sequence {Tn =
"AnBnCn}n≥0. Then, as n → ∞, Tn converges (in shape) towards an equilat-
eral triangle.

Proof. (Sketch)
It is easy to show that the angles of T1 depend linearly on the angles of T0.

More precisely,

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Â0

B̂0

Ĉ0
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Therefore the limiting shape is an equilateral triangle. !

It is interesting to note that the triangle sequence {Tn}n≥0 defined above has
also a limiting point. (the radius of each new circle is at most half the radius of the
previous circle). In fact, this limit point is called the Poncelet point of the initial
triangle T0. Synge (see [6], problem B25) asks whether this can be specified in finite
terms (i.e., by a formula involving the vertices of T0). We do not know the answer
to this question.
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Figure 4. A second construction using the incircle

A similar problem with the one above appeared in [10].

Theorem 3 (Another incircle construction). Given an arbitrary tri-
angle T0 = "A0B0C0 with incenter I denote by A1, B1, C1 the points where the
line segments A0I, B0I and C0I respectively intersect the incircle of T0. Define
the new triangle T1 = "A1B1C1 (see Figure 4). In the same way, we can con-
struct T2 = "A2B2C2, · · · , Tn = "AnBnCn · · · . The limiting shape of the triangle
sequence {Tn}n≥0, as n → ∞ is an equilateral triangle.

Proof. (Sketch)
As in the previous problem there is a simple linear dependence between the

angles of T1 and those of T0.
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Â1

B̂1

Ĉ1



 =




1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2



 ·




Â0
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Figure 5. Neuberg’s construction

As in the previous case, the limiting shape is an equilateral triangle. Moreover,
it can be easily shown that {Tn}n≥0 converges to a point but again, we are unable
to express the position of this limiting point in finite terms. !

The next result is attributed to Neuberg – see e.g. [5, 14, 16].

Theorem 4 (Neuberg). Let T0 = "A0B0C0 be an arbitrary triangle and
let P be a point inside the triangle. Drop the perpendiculars from the point P onto
the lines, A0B0, A0C0 and B0C0. We label the points of intersection C1, B1 and
A1, respectively. We can now form a new triangle, T1 = "A1B1C1. Similarly, we
drop the perpendiculars from P onto A1B1, A1C1 and B1C1. We label the points of
intersection C2, B2 and A2, respectively. Thus, we can form T2 = "A2B2C2 – see
Figure 5. Finally, we construct triangle T3 = "A3B3C3 in a similar manner.

Then, triangle "A0B0C0 is similar to triangle "A3B3C3.

We include the short proof.

Proof. Draw the lines from A0 to P , B0 to P and C0 to P . P lies on the cir-
cumcircles of the following triangles: "A0B1C1, "A2B1C2, "A3B3C2, "A2B2C1,
and "A3B2C3. Thus we have

Ĉ1A0P = Ĉ1B1P = Â2B1P = Â2C2P = B̂3C2P = B̂3A3P
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and

P̂A0B1 = P̂C1B1 = P̂C1A2 = P̂B2A2 = P̂B2C3 = P̂A3C3

Thus

Â0 = Ĉ1A0P + P̂A0B1 = B̂3A3P + P̂A3C3 = Â3.

Similarly, B̂0 = B̂3. Therefore by angle-angle, "A0B0C0 and "A3B3C3 are simi-
lar. !

Corollary. Suppose we continue constructing the triangles T4, T5, . . . in
the manner described in the statement of the Theorem 4. Then, the above proof
implies that the shape sequence of {Tn}n≥0 is periodical of period 3.

Let us note that depending on the shape of the initial triangle as well as
the position of point P the triangle sequence in the problem above must not be
necessarily nested.

The following problem has been studied in [12].

Definition. The pedal triangle of a given triangle "ABC is the triangle
whose vertices are the feet of altitudes from A, B and C.

It is therefore natural to consider
The pedal triangle construction: Given any triangle T0 = "A0B0C0 define

T1 = "A1B1C1 to be the pedal triangle of T1 – see Figure 6.

Figure 6. Pedal triangle
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Iterating this procedure, we define Tn+1 to be the pedal triangle of Tn. Note
that this is not necessarily a nested triangle sequence. The same questions regarding
the limiting behavior of {Tn}n≥0 can be asked.

Kingston and Synge found in [12] necessary and sufficient conditions for the
shape-sequence of {Tn}n≥0 to be periodical for any given period, p. Moreover, they
showed that there are triangles T0 for which the periodicity phenomenon appears
only after an arbitrarily large number of iterations (they call this periodicity with
delay).

In other words, they show that given any positive integers p and d, there is
a choice for T0 such that no two triangles in the list {T0, T1, . . . , Td} are similar to
each other but Tk is similar to Tk+p for every k ≥ d. We thus encounter in this
case a somewhat similar situation to the one mentioned in the fixed division ratio
construction.

We finally got to the problem that represents the main goal of this paper.
What if the vertices of triangle Tn+1 are the feet of the angle bisectors of Tn

for every n ≥ 0? Trimble [15] has shown that if T0 is isosceles then the limiting
shape is that of an equilateral triangle. No proof has been published for the case
when T0 is an arbitrary triangle. We present such a proof in the next section.

3. Triangles formed by angle bisectors

Problem. Let T0 be an arbitrary triangle with vertices A0, B0 and C0, and
let T1 be the triangle formed by the intersection points of the angle bisectors of T0

on its three sides (see Figure 7). Construct T2, T3, · · · in the same manner.

We will prove the following

Theorem 5. The sequence {Tn}n≥0 converges (in shape) to an equilateral
triangle.

Observation. As mentioned above, Trimble [15] proved the above theorem
for the special case when T0 is an isosceles triangle. We will present a simpler proof
of this particular case. The main difficulty in proving the general statement is that
there is no linear recurrence relationship between the angles of Tn and the angles of
Tn+1 (as it happened in Theorems 2 and 3, for instance).

The proof of Theorem 5 will consist of a sequence of lemmata – some of which
are rather computationally involved. We used Maple to perform and check these
calculations.

Notation. Let an, bn, cn denote the lengths of the sides BnCn, CnAn and
AnBn respectively.
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We will first express cn+1 in terms of an, bn and cn.
By the angle bisector theorem in triangle AnBnCn we have that

BnAn+1

An+1Cn
=

AnBn

AnCn
=

cn

bn

from which by using derived proportions we obtain

CnAn+1 =
anbn

bn + cn
. (1)

Similarly, it can be shown that

CnBn+1 =
anbn

an + cn
. (2)

Using now the cosine rule in "An+1Bn+1Cn we have that

An+1B
2
n+1 = CnA2

n+1 + CnB2
n+1 − 2 · CnAn+1 · CnBn+1 · cos Ĉn

which after using the notation introduced above as well as (1) and (2) becomes

c2
n+1 =

a2
nb2

n

(an + cn)2
+

a2
nb2

n

(bn + cn)2
− 2

a2
nb2

n

(an + cn)(bn + cn)
cos Ĉn.

But if we use the cosine rule in "AnBnCn, we get

cos Ĉn =
b2
n + a2

n − c2
n

2anbn
.

Thus

c2
n+1 =

a2
nb2

n

(an + cn)2
+

a2
nb2

n

(bn + cn)2
−

anbn

(
b2
n + a2

n − c2
n

)

(an + cn)(bn + cn)
.

Figure 7. T1 is determined by the feet of the angle bisectors of T0
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Similarly,

a2
n+1 =

b2
nc2

n

(an + bn)2
+

b2
nc2

n

(an + cn)2
−

bncn

(
b2
n + c2

n − a2
n

)

(an + bn)(an + cn)
(3)

and

b2
n+1 =

c2
na2

n

(bn + cn)2
+

c2
na2

n

(an + bn)2
−

cnan

(
c2
n + a2

n − b2
n

)

(bn + cn)(an + bn)
.

Observation. The recurrence relations above do not seem to be particularly
simple. However, if the initial triangle T0 is isosceles the problem is readily solved.

Theorem 6 (The Isosceles Case). If we repeatedly take the angle bisec-
tors of an isosceles triangle, the resulting sequence of triangles {"AnBnCn}∞n=0,
converges in shape towards an equilateral triangle.

Proof. Let us suppose that T0 is isosceles; assume for instance that b0 = c0.
Using the recurrence relations (3), a straightforward induction reasoning implies
that bn = cn for all n ≥ 0.

Then, using (3) we can rewrite a2
n+1 and b2

n+1 as follows

a2
n+1 =

a2
n b2

n

(an + bn)2

and

b2
n+1 =

a2
n

(
5b2

n − a2
n

)

4(an + bn)2
.

Combining the last two equalities we obtain that

a2
n+1

b2
n+1

=
4b2

n

5b2
n − a2

n

.

Obviously, it would suffice to show that the ratio dn := a2
n/b2

n tends to 1 as n
approaches infinity. The last equation can be written as

dn+1 =
4

5 − dn
(4)

where 0 < d0 < 4, the last inequality being a consequence of the triangle inequality
a0 < b0 + c0 = 2 b0.

Obviously, for every n ≥ 0 we have 0 < dn < 4. Moreover, it can be easily
shown that {dn}n≥0 is monotonic (strictly increasing if d0 < 1, strictly decreasing if
d0 > 1 and constant if d0 = 1). This can be shown using the fact that dn+1 = f(dn)
where f(x) = 4/(5 − x). We skip the simple induction in favor of presenting a
“picture proof” – see Figure 8.
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Figure 8. {dn}n≥0 is decreasing and convergent to 1 when d0 > 1

Therefore, {dn}n≥0 is bounded and monotonic, and therefore convergent.
Passing to the limit in the recurrence relationship (4) we have that

L =
4

5 − L
where L := lim

n→∞
dn

from which L2 − 5L + 4 = (L − 1)(L − 4) = 0. But L '= 4 since from the Figure 8
above we can easily see that dn ≤ max{1, d0} < 4. Therefore, L = 1 and the proof
is complete. !

We now return to the case when "A0B0C0 is an arbitrary triangle. We start
with the following

Lemma 1. If c0 = max{a0, b0, c0} then cn = max{an, bn, cn} for every n ≥ 0.

Proof. Induction on n. Consider the difference c2
n+1 − a2

n+1. From (3) after
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some simplifications it follows that

c2
n+1 − a2

n+1 (5)

=
an bn cn (cn − an) ·

[
(c2

n − b2
n)(an + bn + cn) + an(an + bn)(an + cn)

]

(an + bn)2(bn + cn)2(an + cn)

Since by the induction hypothesis cn ≥ an and cn ≥ bn, every factor in
the right hand side of the above equation is nonnegative. Hence, cn+1 ≥ an+1.
Analogously, it can be shown that cn+1 ≥ bn+1. This ends the induction proof.

Notation. Define the sequences {rn}n≥0 and {sn}n≥0 by

rn :=
a2

n

c2
n

; sn :=
b2
n

c2
n

.

Clearly, by the above lemma we have that 0 < rn, sn ≤ 1 for all n ≥ 0.
Obviously, for proving Theorem 5 it would suffice to show that these two sequences
converge to 1. However, at this point it is not clear whether {rn}n≥0 and {sn}n≥0

are convergent. Moreover, these sequences need not be monotonic, fact which makes
our proof more laborious.

We need two technical results.

Lemma 2. Let tn = (rn − sn)2. Then limn→∞ tn = 0.

Proof. Clearly, 0 ≤ tn < 1 for every n ≥ 0. We will show that

tn+1 ≤ tn + t2n
2

for every n ≥ 0. (6)

For now, assume (6) holds true. Then we obtain

tn+1 ≤ tn + t2n
2

≤ tn + tn
2

= tn

that is, {tn}n≥0 is decreasing and bounded, therefore it converges to some limit
l ∈ [0, 1]. If we pass to the limit in (6) it follows that

lim
n→∞

tn+1 ≤ lim
n→∞

tn + t2n
2

=⇒ l ≤ l + l2

2
.

So,

l(1 − l) ≤ 0 =⇒ l = 0 or l = 1.

But l '= 1, or else t0 = 1 since the sequence is decreasing. But this means that
(r0 − s0)2 = 1, that is, either r0 or s0 is equal to 0, which is impossible since we
started with a non-degenerate triangle T0. Thus l = 0 and therefore |rn − sn| → 0
as n → ∞.
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It remains to prove inequality (6). Denote an = cn − u and bn = cn − v.
Since cn is greater than both an and bn it follows that u, v ≥ 0. By the triangle
inequality, an + bn − cn = w > 0. Hence,

an = v + w, bn = u + w and cn = u + v + w. (7)

Substituting now (7) into the expression tn+t2n
2 − tn+1 we obtain that

tn + t2n
2

− tn+1 =
P1(u, v, w)
Q1(u, v, w)

(8)

where P1(u, v, w) and Q1(u, v, w) are polynomials of degree 16 in the nonnegative
variables u, v and w taking only nonnegative values. Hence, tn+t2n

2 − tn+1 ≥ 0 which
proves (6) and with it the entire Lemma 2. !

The second intermediate result we need is given in the following

Lemma 3. Let xn = min {rn, sn} = 1
2 ·(rn +sn− |rn−sn|). Then the sequence

{xn}n≥0 is convergent.

Proof. Obviously, 0 < xn ≤ 1 for all n ≥ 0 so the sequence is bounded. We
will show that {xn}n≥0 is increasing from which the result stated above will follow.

Without loss of generality suppose that for a given n, xn = min {rn, sn} = rn.
We want to show that xn+1 ≥ xn, which is equivalent in this case to proving that
rn+1 ≥ rn and sn+1 ≥ rn.

Let us use the same notations (7) from the previous lemma.
It is easily shown that rn − sn = (v − u)(v + u + 2w)/(u + v + w)2. The

assumption that rn ≤ sn, implies that v ≤ u.
Let us denote u = v + z, where z ≥ 0. Then equalities in (7) become

an = v + w, bn = v + w + z and cn = 2v + w + z. (9)

Using now (9), a straightforward Maple computation gives that

rn+1 − rn =
P2(v, w, z)
Q2(v, w, z)

≥ 0 (10)

since both P2(v, w, z) and Q2(v, w, z) are polynomials of degree 7 in the nonnegative
variables v, w and z having all coefficients positive.

Similarly, using again (9), we obtain that

sn+1 − rn =
P3(v, w, z)
Q3(v, w, z)

≥ 0 (11)

since P3(v, w, z) and Q3(v, w, z) are polynomials of degree 7 in the nonnegative
variables v, w and z having all coefficients positive.

It follows that if xn = rn then xn+1 ≥ xn. The case when xn = sn is treated
similarly. This finishes the proof of lemma 3. !
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We are now in position to prove Theorem 5.
By lemmata 2 and 3, we have that both sequences {rn + sn}n≥0 and {rn −

sn}n≥0 do converge and the second one converges to 0. Therefore both sequences
{rn} and {sn} converge to the same limit and hence the sequences defined by the
general terms

Rn =
√

rn = an/cn and Sn =
√

sn = bn/cn

converge to a common limit, Λ. Recall that we would like to show that Λ = 1.
Using the equations from (3) we derive the following equality

R2
n+1 (12)

=
−(Sn + 1)2(−S3

n − RnS2
n + S2

n + 3RnSn + Sn + R2
nSn − 1 + R3

n + R2
n − Rn)

(R3
n + R2

n − R2
nSn − 3RnSn − RnS2

n − Rn + S2
n − Sn + S3

n − 1)(Rn + Sn)2
.

We know that limn→∞ Rn = limn→∞ Sn = Λ so by passing to the limit in (12)
we get that

Λ2 =
(
5Λ2 − 1

)
(1 + Λ)2

4Λ2(1 + Λ)2
=

5Λ2 − 1
4Λ2

which readily implies that either Λ = 1/2 or Λ = 1.
We still have to eliminate the first possibility. Notice that if Λ = 1/2 then the

limiting triangle would be a flat isosceles triangle.
Consider the following sequence

gn :=
16 A2

n

c4
n

where An denotes the area of the nth triangle and cn is the side of maximum length
(see Lemma 1).

From Heron’s formula is easy to deduce that

16 A2
n = −a4

n − b4
n − c4

n + 2a2
n b2

n + 2a2
n c2

n + 2b2
n c2

n

which immediately implies that

gn = −r2
n − s2

n − 1 + 2rn sn + 2rn + 2sn. (13)

Clearly, since {rn}n≥0 and {sn}n≥0 are convergent then the sequence {gn}n≥0

is convergent, too. Notice that if Λ = 1/2 then limn→∞ gn = 0. However, we will
prove below that this is impossible.

The proof of Theorem 5 will be finished as soon as we manage to show

Lemma 4. The sequence {gn}n≥0 is increasing.
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Proof. We will use the same approach as in Lemma 2. Denote an = cn − u
and bn = cn − v. Since cn is greater than both an and bn it follows that u, v ≥ 0.
By the triangle inequality, an + bn − cn = w > 0. Hence, an = v + w, bn = u + w
and cn = u+ v +w. Substituting now an, bn, cn into the expression of gn we obtain
that

gn+1 − gn =
P4(u, v, w)
Q4(u, v, w)

(14)

where P4(u, v, w) and Q4(u, v, w) are polynomials of degree 12 in the nonnegative
variables u, v, w having all coefficients positive. It follows the {gn}n≥0 is an in-
creasing sequence. !

Since {gn} is increasing and has only positive terms it cannot converge to 0.
This means that Λ = 1 therefore the limiting triangle is equilateral. The proof of
Theorem 5 is now complete.

4. Open problems

It seems that finding the limiting point of a certain iterative geometric process
is a much more difficult problem than the one concerning the limiting shape. In
particular, we would be interested in finding these limiting points in the cases of
the incircle-circumcircle sequence (the Poncelet point that is) and in the case of the
last construction (triangles determined by the angle bisectors). Also, it would be
interesting to find all values of the division ratio 0 < s < 1 for which the triangle
sequence constructed as in Theorem 1 is divergent (in shape).
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