Constructing a Bicentric Quadrilateral
Victor Oxman ${ }^{18}$ \& Moshe Stupel ${ }^{2,3}$
${ }^{1}$ Western Galilee College, Acre, Israel
${ }^{2}$ Shaanan College, Haifa, Israel
${ }^{3}$ Gordon College of Education, Haifa, Israel
victor.oxman@gmail.com stupel@bezeqint.net

Bicentric quadrilaterals ${ }^{5}$ are convex quadrilaterals that have both an incircle and a circumcircle. There are several ways to construct bicentric quadrilaterals. In this short article we present a simple construction protocol and then prove that the constructed quadrilateral is indeed bicentric.

Begin with a circle with centre O and four arbitrary points on the circumference, A, B, C and D. Next draw midpoints $\mathrm{K}, \mathrm{I}, \mathrm{N}, \mathrm{G}$ of the $\operatorname{arcs} \mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively. The final step is to draw four tangents to the circle at the points K, I, N, G to obtain quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ (see diagram below).

To prove that quadrilateral $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ is cyclic, with reference to the diagram below, rotate quadrilateral IONC' anticlockwise about point O until OI rests on OK . The quadrilateral thus formed, $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \mathrm{GN}$, is a trapezium with $\angle A^{\prime}+\angle C^{\prime}=180^{\circ}$, from which it follows that quadrilateral $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ is cyclic.

[^0]
[^0]: ${ }^{5} \mathrm{https}: / / \mathrm{en}$.wikipedia.org/wiki/Bicentric_quadrilateral

