Page 36

Constructing a Bicentric Quadrilateral

Victor Oxman¹ & Moshe Stupel^{2,3}

¹Western Galilee College, Acre, Israel ²Shaanan College, Haifa, Israel ³Gordon College of Education, Haifa, Israel victor.oxman@gmail.com stupel@bezegint.net

Bicentric quadrilaterals⁵ are convex quadrilaterals that have both an incircle and a circumcircle. There are several ways to construct bicentric quadrilaterals. In this short article we present a simple construction protocol and then prove that the constructed quadrilateral is indeed bicentric.

Begin with a circle with centre O and four arbitrary points on the circumference, A, B, C and D. Next draw midpoints K, I, N, G of the arcs AB, BC, CD and DA respectively. The final step is to draw four tangents to the circle at the points K, I, N, G to obtain quadrilateral A'B'C'D' (see diagram below).

To prove that quadrilateral A'B'C'D' is cyclic, with reference to the diagram below, rotate quadrilateral IONC' anticlockwise about point O until OI rests on OK. The quadrilateral thus formed, C'A'GN, is a trapezium with $\angle A' + \angle C' = 180^\circ$, from which it follows that quadrilateral A'B'C'D' is cyclic.

⁵ https://en.wikipedia.org/wiki/Bicentric_quadrilateral

Learning and Teaching Mathematics, No. 28, 2020, p. 36