
32. Consider an n⇤n chessboard with n > 1, n ⇧ N. In how many di⇥erent
ways can 2n� 2 identical pebbles be placed on the chessboard (each in
a di⇥erent square) such that no two pebbles are on the same diagonal?
(Two pebbles are on the same diagonal if the line joining the midpoints
of the squares the lie in is parallel to one of the main diagonals of the
chessboard.)

33. Let ABCD be a cyclic quadrilateral and let the diagonals AC and
BD intersect in E. Let O1 and I1 be the circumcentre and incentre,
respectively, of triangle ABE and let O2 and I2 be the circumcentre
and incentre, respectively, of triangle CDE. Prove that

(AO2
2 �BO2

2)� (AI2
2 �BI2

2 ) = (DO2
1 � CO2

1)� (DI2
1 � CI2

1 ).

34. Find all k ⇧ N such that there exists an integer a such that (a+k)3�a3

is divisible by 2007.

35. Find all n ⇧ N such that there exists integers a1, a2, . . . , an and
b1, b2, . . . , bn such that

(a2
1 + · · · + a2

n)(b2
1 + · · · + b2

n)� (a1b1 + · · · + anbn)2 = n.

36. Let � be a circle and �1, �2, �3 and �4 be smaller circles with their
centres O1, O2, O3 and O4 respectively. For i = 1, 2, 3, 4 and �5 = �1

the circles �i and �i+1 meet at Ai and Bi. If the points O1, A1, O2, A2,
O3, A3, O4 and A4 lie on �, in that order, and are pairwise di⇥erent,
prove that B1B2B3B4 is a rectangle.

37. Prove that the midpoints of the altitudes of a triangle are collinear if
and only if the triangle is right-angled.

38. For n � 4, prove that if ⌃2n

n ⌥ is a power of 2, then n is a power of 2.

39. Let T be the set of divisors of 2004100. What is the size of the largest
possible subset S of T such that if x, y ⇧ S, then x does not divide y?

40. Determine all functions f : R ⌅ R such that

xf(x + xy) = xf(x) + f(x2)f(y)

for all real numbers x and y.
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the pebbles on two opposite corner squares of this rectangles, hence on
the edge of the board. By the discussion above, this is true for k = 2.

So, assume that it is true for all 1 � k � m. In particular this means
that there is a pebble on each diagonal of type B within m� 1 squares
of the main diagonal. This means that we cannot place a pebble on any
of those 2m� 1 (main + m� 1 to each side) diagonals. At this point
we also have a pebble on each of the m� 1 diagonals of type A closest
to the top left corner (m if we include the one square diagonal in the
corner). Now consider step m + 1 where we consider the next diagonal
of type A, i.e. the one that lies m squares away from the corner. The
only squares that are still available to put a pebble on are the ones on
the edge of the board, i.e. the one m squares below the corner, and the
one m squares to the right of it. Pick one of these. Then the pebble
that lies m squares away from the bottom right square is also fixed (by
symmetry there are only 2 squares available on the diagonal of type A
that lies m squares away from the bottom right corner square, and one
of these are now unavailable, because of our latest choice) and lies on
the opposite corner square of the rectangle.

We are finally ready to do some counting. There are two main diagonals
and n � 1 of these rectangles (corresponding to the n � 1 diagonals
of type A that lie in the upper left triangle of the board). For each
rectangle, there are two choices of how to place the pebbles (either this
pair of opposite corners, or the other pair), and for each main diagonal
there are two ways of placing the pebbles (either the one corner, or the
other), hence in total there are 2n+1 ways to do this.

Middle European Mathematical Olympiad 2008

33. Let us first recall two general facts. The first is about di�erences
between squares. Let AB be two points on a line, C a third point
in the plane, and D the point on AB such that CD ⌥ AB. Then
AC2 � BC2 = (AD2 + CD2)� (BD2 + CD2) = AD2 � BD2. For the
second, let ABC be a triangle, O its circumcentre, and H its orthocen-
tre. Then ⇥BAH = ⇥OAC and similarly for the other vertices. This
can be done by simple angle chasing.

Next, note that, since ABCD is cyclic, we have ⇥CAB = ⇥CDB and
⇥ABD = ⇥ACD, so that ⌃ABE ⇧ ⌃DCE. Suppose that the ratio
of similarity is x := DC

AB . Since EI1 bisects ⇥AEB, EI2 bisects ⇥DEC
and ⇥DEC is opposite ⇥AEB, I1, E and I2 are collinear. Next, by
our second general fact, we claim that O2E extended is perpendicu-
lar to AB and that O1E extended is perpendicular to DC. For this
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suppose that the perpendiculars from E to AB and CD meet AB and
CD in F1 and F2 respectively. Then ⇥AEF1 = ⇥O1EB, and since
⌃ABE ⇧ ⌃DCE, these angles are also equal to ⇥DEF2 = ⇥O2EC.
It follows that O1EF2 and O2EF1 are straight lines. Also denote the
perpendiculars from I1 onto AB and DC by G1 and H2 respectively
and the perpendiculars from I2 onto AB and CD by H1 and G2 re-
spectively.

A

I1

B

H1

C

D

I2

E

O2

O1

F2

G2

H2

F1
G1

The left hand side of the equation becomes

(AO2
2 �BO2

2)� (AI2
2 �BI2

2 )

= (AF 2
1 �BF 2

1 )� (AH2
1 �BH2

1 )

= (AF1 + BF1)(AF1 �BF1)� (AH1 + BH1)(AH1 �BH1)

= AB(AF1 � AH1 + BH1 �BF1)

= 2AB · H1F1,

using directed segments. Similarly the right hand side becomes

(DO2
1 � CO2

1)� (DI2
1 � CI2

1 ) = 2DC · H2F2.

Note that the quadrilaterals EI1G1F1 and EI2G2F2 are similarly con-
structed inside similar triangles ABE and DCE, so they are similar
to each other with the same factor of similarity. Therefore F2G2

F1G1
= x.

Now note that I2E
EI1

= x as well, since they correspond to the same
construction in similar triangles. Therefore their projections onto the
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lines AB and CD must be in the same ratio. So H2F2
F2G2

= I1E
EI2

= 1/x and
H1F1
F1G1

= I2E
EI1

= x. Finally

H2F2

H1F1
=

H2F2

F2G2

F2G2

F1G1

F1G1

H1F1
=

1

x
· x · 1

x
=

1

x
=

AB

DC
,

implying that 2AB · H1F1 = 2DC · H2F2, which is what we wanted.

Michael de Villiers

34. Note that 2007 = 32223, where 223 is prime and that (a + k)3 � a3 =
3k3 + 3ak2 + a2k. If k is not divisible by 3, then a2k has to be divisible
by 3 (since 3|3k3 + 3ak2 + a2k), which implies that a is divisible by
3. But then 3ak2 + a2k is divisible by 9, but 3k3 is not. So, it is
necessary that k = 3m for some integer m. We claim that this is also
su⇤cient. Substituting k = 3m and a = 3b in the equation tells us that
3k3 +3ak2 +a2k = 27(3m3 +3bm2 +b2m) = 27m(3m2 +3bm+b2) must
be divisible by 223.

If 223 also divides k, then we may take a = 0, since k3 is divisible
by 223 and by 9. So suppose that k, and hence m is not divisible
by 223. Since 223 is prime, this means that m has a multiplicative
inverse modulo 223, or alternatively there exists some integer c such
that cm ⌅ 1 (mod 223). If 223 divides 27m(3m2 + 3bm + b2), then it
also divides 3m2+3bm+b2 (since 223 does not divide 27m) and hence it
also divides c2(3m2+3bm+b2) = 3c2m2+3bmc2+b2c2 ⌅ 3+3bc+(bc)2.

So, if we can find some x such that 3 + 3x + x2 is divisible by 223,
then we can set b = mx ⌅ c�1x (mod 223), where the inverse is taken
modulo 223 and this will give a solution to the original problem. To
show that 3 + 3x + x2 has a root modulo 223, write it as x2 + 3x + 3 ⌅
x2�220x+3 = (x�110)2+3�1102 ⌅ (x�110)2�55 (mod 223). Using
quadratic reciprocity, we show that 55 is a quadratic residue modulo
223:

� 55

223

⇥
=
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