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2 THE MATHEMATICAL GAZETTE

Extensions of a theorem of Van Aubel
JOHN R. SILVESTER

1. Introduction and preliminaries

A theorem of Van Aubel, which first appeared in [1], concerns the
figure obtained by erecting squares on the sides of a quadrilateral, and
considering various line segments such as the joins of the centres of
opposite squares. In [2], parts of the theorem are extended to the case of (i)
four similar rhombi, and (ii) four similar rectangles erected on the sides of a
quadrilateral. Further, these two results are described as in some sense
‘dual’ to each other. Here we show that they are in fact both special cases of
a further extension of the original theorem (see Proposition 6, and the
remarks that follow it), and we also find several extra squares in the original
Van Aubel figure (Proposition 11).

We shall adopt the general convention that points A;, B,, ... are
represented as complex numbers by the corresponding lower case letters
a, b2,

In a number of places we shall make use of the following well-known
technical device:

Equal Fractions Lemma: If several fractions are equal, then each of them is
equal to any linear combination of their numerators divided by the
corresponding linear combination of their denominators (provided this is not
Zero).

Proof: lfu = 4 forj = 1,2, ..., then for any 4, 4y, ... (with 3;4,y; # 0),
J

LAy LAGy) w Xy

Lidy iy XAy
Is this well-known? I've mentioned it once or twice in company recently,
and got blank looks all round. In my youth, it featured regularly in school
examinations, and I had the impression that most people were familiar with
it. Thirty years ago, I remember using it to solve a newspaper brain-twister,
and saying to a very eminent colleague (who shall remain nameless) that
any reasonably intelligent non-mathematician ought to be able to follow the
argument. ‘If they were reasonably intelligent,” he remarked mildly, ‘they
wouldn't be non-mathematicians!’—but I digress.

2. The diagonal ratio of a quadrilateral
Let A;A>A3A,4 be a quadrilateral, which might possibly be non-convex, or
might even have two opposite sides crossing internally. The diagonals of
AAA3A, are the line segments AjA; and A,A,, and we define the diagonal
ratio (A;A,AsA,) to be the complex number given by the formula
(AAn) = L=2

a, — Ay
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EXTENSIONS OF A THEOREM OF VAN AUBEL 3

We shall say that the quadrilateral A;A,A3;A4 is equidiagonal if the
lengths AjAs, AyA, are equal, that is, if |(4,4,434,)] = 1, and orthodiagonal
if AjAz1A)A,, that is, if (A1A2A3A4) is pure imaginary. So, for example, every
rectangle is equidiagonal and every rhombus is orthodiagonal.

If the quadrilateral I" has diagonal ratio z, then a cyclic permutation, or a
reversal (or both) of the vertex order of I" will produce a quadrilateral with
diagonal ratio z, -z, 77! or -z}, and it would make some sense to regard
these complex numbers as equivalent, and then work with equivalence
classes. However, we choose not to do this, and instead are careful at
various steps to name vertices in the order that produces the ‘correct’ (i.e.
desired) value of the diagonal ratio. Notice, however, that if z has modulus
1 (respelctively, if z is pure imaginary), then the same can be said of -z, 7!
and -z

Now let AjA;A3A4 be a quadrilateral, and let BB,B;B, be the midpoint
quadrilateral: specifically, let By, B,, B;, B4 be the midpoints of AA;, AjAs,
A4A;3, AsA; respectively (note the order). It is a well-known theorem of
Varignon that B, B,B3B, is always a parallelogram; but a parallelogram can
have any diagonal ratio. However, it is easy to show that the diagonal ratios
z = (AlAAA) andw = (BIBZB3B4) are related:

z+1

Proposition 1: With z, w as above, we have w = T
7z —

Proof:

=b1—b3=%(a2+al)—%(a4+a3)=(al—a3)+(az—a4)=z+l
b, — by %(al+a4)—%(a3+az) (01—03)"(02—04) z-1

Proposition 2: Let AjA;A3A4 have midpoint parallelogram B B,B3B,. Then
(i) AjAA3A,is equidiagonal iff By B,B;B, is orthodiagonal, and
(i)  A;AxA3A, is orthodiagonal iff B, B,Bs;B, is equidiagonal.

. . z+ 1, . . .
Proof: The Mobius transformation f : z = N is an involution, that is,

f* =1, and it interchanges O with —1, i with —i, and 1 with .
Consequently, it interchanges the unit circle |z| = 1 with the imaginary
axis, and the result follows.

Of course, this proposition has a much easier geometric proof (not using
complex numbers), which we leave to the reader.

Proposition 3: Letf : C — C be a transformation, and for each point A
write f (A) = A’. Then, for any quadrilateral A;AA3A,,

(1) if f is a direct (that is, orientation-preserving) similarity, then
(AiAAsA;) = (AAYAYAY);
(i)  if fis a translation, then (A;4;4344) = (A"A2As"As) = (A1AY ASAY).
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4 THE MATHEMATICAL GAZETTE

Proof. There exist u, v € C, with u # 0, such that, for all z € C, (i)
f(2) = uz + v; (i) f(z) = z + v. The result is immediate.

as — ay

The next proposition is about what we might call the side ratio
a — a

of a parallelogram A;A;AsA4, though we shall simply regard this as the
diagonal ratio of the degenerate quadrilateral A4A>A;A;:

Proposition 4: Let AjA»A3A4 be a parallelogram, and let By, B, B3, B, be the
midpoints of AjA;, AA;, AAy, A4 respectively. Then
(AdrA1A)) = (B;B:B\B,).

Proof: Immediate from Proposition 3(ii) (or by direct calculation).

3. A theorem about four parallelograms

FIGURE 1: Proposition 5

Proposition 5: Given a quadrilateral A;A;AzA,, erect parallelograms
A1A2C2Dl, A2A3C3D2, A3A4C4,D3, A4A1C1D4 on the SideS, and let the
parallelograms have centres By, B,, Bs, B, respectively. Let the midpoint of
Cka be Ek, k = 1,2,3,4. Then

(1)  BiB;B3B, is equidiagonal iff E|E,E;F, is orthodiagonal, and

(ii)  B;B,Bs3B, is orthodiagonal iff E, E,E3E, is equidiagonal.
(See Figure 1, which shows the second case, where BB,B3B; is
orthodiagonal. For clarity, a case where all four of the parallelograms are
external to A;A2A3A, is shown, though in fact each one (separately) can be
erected either externally or internally.)

Proof: B, is the midpoint of A;C,, so b, = %(al +¢,), whence ¢, = 2b, — a;;
sumlarly d2 =2b, — az, and so e = %(Cz + dz) = bl + b2 - %(dl + 03).
Likewise e3 = by + b — %(az + a4), ey = by + by — %(al + a3) and
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EXTENSIONS OF A THEOREM OF VAN AUBEL 5

e; = by + by - %(az + a4). By two applications of Proposition 3(ii) and
one application of Proposition 3(i), it follows that E|E,E;E, has the same
diagonal ratio as the midpoint parallelogram of BB,B;B,, and the result
follows from Proposition 2.

4. Theorems about four similar parallelograms

For the rest of this paper, we shall be concerned with a special case of
Figure 1, where the four parallelograms are directly similar; but the vertices
do not correspond in perhaps the most obvious order. We write
PRPP, ~ 0,0,0:0, to mean that P P,P;P, is directly similar to Q10,0504
with P corresponding to Oy, for each k. We shall assume that

AACoDy ~ A3C3DyAy ~ AsALCDs ~ A[C1DA,. (D
The points E; are defined as before, throughout. See Figure 2.

FIGURE 2: Four similar parallelograms

Proposition 6: Given (1), we have (BleB3B4) = (DAAA)).

Proof: By Proposition 3(i), we have

(DiAAIA) = (ACAA;) = (D:AAAS) = (ACI1AAL) = u (say),
that is,

u_2b1—a2—al_ @w-a 2h-a-a3 a4 a @
a; — Qq 2b2—(12—a3 as— as 2b4—a4—a|'
Using the equal fractions lemma,
__@b-ay-a) +  (ama3) - (2bs—as—a;) - (a4—ay)
(m-a)) + (byay-az) - (a4—a5) - (2bs—as—ay)
which is just B;B,B;B,.
. B\B; AD; . .
In particular, —— = ——, and also, if the lines B;B; and B,B, meet at
B,B, AlA;

O, then 4ZB,0OB, = £D;A\A,. From Proposition 5, with the E; defined as

This content downloaded from 146.232.124.166 on Tue, 17 Mar 2020 06:35:33 UTC
All use subject to https://about.jstor.org/terms



6 THE MATHEMATICAL GAZETTE

E\Ey = 4Dy and also, if the lines EF; and E,E4 meet at Q, then
BE, AG
ZE]QEZ = LAzBlAl.

As special cases, if AA,C,D; is a rectangle, then BB,B;B; is
orthodiagonal and E|E,E3E, is equidiagonal; and if A;4,C,D, is a thombus,
then B;B,B3B, is equidiagonal and E|E,E;E, is orthodiagonal. This shows
that {2, Theorems 5 & 6], rather than being in some sense ‘dual’ to each
other, are in fact two special cases of the same theorem. Van Aubel's
theorem itself is the case where A;A,C,D) is a square, so that B;B,B;B, is
both equidiagonal and orthodiagonal, likewise E| E,E3E,.

We now turn to the question of when the four lines B,Bs;, B,B,, E\E3,
E,E, are concurrent, that is, when the points O and Q coincide. First, an
easy special case:

Proposition 7: Given (1), if A}AA3A, is a parallelogram, then the six lines
AAs, AyA4, B\Bs, ByBy, E\E3, E>E4 are concurrent.

Proof: One does not need complex numbers for this: if AjA; and A,A4 meet
at P, then the entire diagram is symmetrical by a half-turn about P; see
Figure 3. (Nonetheless, the reader might like to check that, if
ayt+taz=ay+as=2p,thenalsob, + by =by+by=e;+e3=e,+e4=2p.)

FIGURE 3: Proposition 7, and Proposition 8, case (ii)

In the general case, let us take O as the origin; so now Bj, B, and O are

collinear, and thus 2L e R; likewise 2 ¢ R. Nowu = —1—_——3, by
b3 b4 b b2 - b4
Proposition 6, and it follows that u is a real multiple of b—l, likewise of —=.
3 4
So there exist A, 4 € R, with il = Auand = = uu.
b2 b4
Next,

e2_2b1+2b2——a1—a3

€4 B 2b3+2b4—a1 —(13‘

This content downloaded from 146.232.124.166 on Tue, 17 Mar 2020 06:35:33 UTC
All use subject to https://about.jstor.org/terms



EXTENSIONS OF A THEOREM OF VAN AUBEL 7

From (2),
u_2b1—az—(11_ Q) — as
a, — a; 2by, —a; — a3
_@h-am-a)t(a-a) 2b-a-as
(a-a)+(2b-ay-a3) 2b,-a;-a;’
whence a; + a3 = z—(llll——u—bz—) and similarly a; + a3 = 2(—b13lb4).
-u - u

So, substituting back,
e (1=u)(by+by)—(by—ub)) by—ub, (by\[1-Au?
es (L=u)bs+b)~(bs—ub) ~ by—ubs (ZZ)(I —wz)'
It follows that

2R o 1 -2d)(1 - uii®) e R
€4
o 1+ Au(uin)? - Ju? — ui* € R
o Ww-Mur+ (1 + Ay - u@® + a?)) e R

& (- M2 eR.

But 4 — A € R, and so ? e R iff either A = yu or 4’ e R. This leads to:
4
Proposition 8: Given (1), the four lines BB;, BBy, E|E3;, E)E, are
concurrent iff
(i) AAC,D, is arectangle, or
(i) A;AA3A, is a parallelogram.
(See Figures 3 and 4. The sufficiency of (i) is part of [2, Theorem 5].)

Proof. If (i) holds, then (AlAzCle) = u is pure imaginary, so that W e R,
and by the above calculation it follows that 2 € R and thus E,E, passes
€4
e

! ¢ R, and E\Ej; passes through O also. If (ii) holds,
€3

through O; similarly,

use Proposition 7.

So now suppose we are not in case (i). We shall assume that u is not
real, for if it is, then we are in a degenerate case in which the parallelograms
collapse, and C,, D lie on the line A;A;. The reader might like to show that
when this happens the four lines B,B3, B,Bs, E\E3, E;E, are all parallel, so
that they are concurrent at a point at infinity.
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8 THE MATHEMATICAL GAZETTE

E;
E - —
o~ 2 e
~\L T B
~ =
> S A\ - Bs
eSS
- ‘ . )
Y i ~.
-7 " <o
) : N
E, A 1 A, d
By

FIGURE 4: Proposition 8, case (i)

If we are not in case (i) and u is not real, then «? is not real either: so, by
the above,

E,E, passes throughO = 1 = u
= — = =

by b3 b - by
b2 b4 bz - b4

ﬁbl—ub2=0=b3—ub4

= a +a = 0.

Similarly, if E,E; passes through O, then a; + a, = 0. So if the four lines
B\B;, BBy, E\Es, E>E4 are concurrent and we are not in case (i), then
a + a3 = 0 = a; + ay, and we are in case (ii).

Proposition 9: In the rectangular case (Proposition 8, case (i)), B;B; and
BB, are the bisectors of the angles between E|E; and E,E, at O. (This also
appears in [2].)

Proof: We need to show that ZE,OB, = ZB,0F;, and for this we just need
€263

53 e R. As before, we have
b1 - ub2 _ b2 - ubl

e2=bl+b2—12-(a1+a3)=bl+b2— - - u

and, by a similar calculation,

by + ub by + ub
e3=b2+b3—12~(a2+a4)=b2+b3— 31+u2= 21+u3

)

so that
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EXTENSIONS OF A THEOREM OF VAN AUBEL 9

. b by . .
Since each of — and b—3 is a real multiple of u, and u* € R, we see that
2 2
€263

5 € R, and the result follows.

We now return to the general case (1), where the four similar
parallelograms are not necessarily rectangles. We are going to find two
more parallelograms similar to these four. To this end, let Fj, F, be the
midpoints of B,Bs, B,B, respectively; let G;, G, be the midpoints of EE3,
E>E, respectively; and let H,, H, be the midpoints of AA;, AA4
respectively. Of course, if AjA,A3A, is a parallelogram, then the six points
we have just defined will all coincide; so let us assume that A;A,A3A, is not a
parallelogram. We have

2fy = by + b,
2f, = by + by,
2g1=e1+e3=b1+b2+b3+b4—(a2+a4),
2g2=e2+e4=b1+b2+b3+b4—(a1+a3),
2h, = a, + as,

2h, = a; + a,.

It is immediate that f; + f, = g + hy = g, + hy, so that the midpoints of
FF, GH; and G,H, coincide. Thus the quadrilaterals F,G,F,H,, G,F H\F;
and G,G,H,H, are parallelograms.

Proposition 10: Given (1), and assuming A;A,A3A4 is not a parallelogram,
then A1A2C2Dl -~ FlGleHz ~ GzFlHle

Proof: We have
by —fi & +a-b - b
g -fi by+bs-a - as

fo-& a, + a3 — b — b
(RFG.G) fi—-& a+a3-by—b
Letu = (DAAlA;), as in (2). From (2), and the lemma on equal fractions,
-(2b1—ay—a;) =* (ay—as3) - (2bs-a4—a;) = (as—ay)
—(ay-a1)) £ (2br-ay-a3) - (as—as) = (2bs—as—a))
Taking the four upper signs, we have u = (H,G,FF,), and taking the four
lower signs, we have u = (FzF] Gsz).

(H,G\FF) = and

U=
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10 THE MATHEMATICAL GAZETTE

5. Van Aubel revisited

Proposition 11: Suppose the four parallelograms of condition (1) are
squares. Then (using the above notation)

(i) B1B,B3B, is equidiagonal and orthodiagonal;
(i) E\E,E;E,is equidiagonal and orthodiagonal;
(iii) the four lines ByB;, B>B,, E\E;, E;E, are concurrent and equally
inclined;
(iv) the midpoint parallelogram of B;B,B;B, is a square;
(v) the midpoint parallelogram of E|E,E;E, is a square;
(vi) Gy =H,, G, = H,, and (provided A;A;A3A, is not a parallelogram)
F,GF,G, is a square; and finally
(vii) the square in (iv) is the midpoint parallelogram of the square in (v).

See Figure 5, where for clarity we have taken A;AA3A; convex and the
squares external; we invite the reader to draw the corresponding diagram for
some other cases, e.g. a case where the four original squares are erected
internally on the sides of A;AA3A,, or a case where two opposite sides of
A1AA3A, cross internally.

FIGURE 5: Proposition 11

Proof: Most of this is done already: (i) follows from Proposition 6, as
previously remarked, and then (ii) follows from (i) and Proposition 5. Then
(iii) is Proposition 8, case (i), together with Proposition 9. This far, the
theorem is Van Aubel's theorem, as stated in [2].

Next, (iv) and (v) follow from (i) and (ii) together with Proposition 2.
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EXTENSIONS OF A THEOREM OF VAN AUBEL 11

Finally, we prove (vi) and (vii). From Proposition 10, F;GF,H, and
G,F H,F, are directly similar, and are squares. Since they share the opposite
vertices F; and F,, they coincide, so G; = H; and G, = H,, which
completes (vi). (The reader is invited to check that G, = H, and G, = H,
even if AjA,A3A, is a parallelogram.) From g; = h; we deduce that

by + by + b3 + by = ay + ay + a3 + as. 3

There is an amusing alternative way to derive (3): we have

bl - a b2 - a b3 - a3 b4 — a . .
= = = =1 (Ol' - l).
b1 - b2 - a3 b3 — a b4 bt b1

But here the numerators and denominators both add up to
by + by + by + by — a; — a; — a3 — ay, so if this is not zero, the lemma
on equal fractions gives us 1 = i (or —i), a contradiction, and so (3)
follows, again.

We now have

a + ay a, +as

J+2(by+ b2 - ot

€1+2€2+€3=(b4+b1— )+(b2+b3-

=3b, +3by+ by + by —(a; + ay + a3 + ay)

=2(b; + by),
or

l(€1+€2 €2+€3)_ b, + b,
2\ 2 2 ) 2

which says that the midpoint of the line joining the midpoints of E|E, and
E,Ej; is the same as the midpoint of B;B,. A similar calculation for the other

three vertices finishes (vii).

As a parting shot, we invite the reader to draw the diagram in the special
case where A; = Ay, so that in fact A; = Ay = B; = C4 = D;. We then
obtain a theorem about three squares erected on the sides of AA;AA;,
considered as a degenerate quadrilateral A;A,A3A;, so we can add to this the
corresponding theorems about the degenerate quadrilaterals A;A4,4,A; and
AA1A)A;. Part of what results is a familiar theorem about the concurrency
of the lines joining A;, A,, A; to the centres of the opposite squares (at the
orthocentre of the triangle formed by these centres), but Propostion 11 also
gives us nine other squares to be drawn within the figure. The author's
recommended method for drawing this is to use a dynamic geometry
program to produce Figure 5, and then move A4 to coincide with A;. A
macro can be used to reproduce this figure so as to superimpose the three
degenerate quadrilaterals, and judicious use of colouring helps make sense
of the resulting collection of lines and squares.
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Humour Corner

At first glance, there does not seem to be much of a connection between
mathematics and humour ; mathematics is considered to be rather serious,
while humour is always rather flippant. And yet, my experience is that most
mathematicians I have met have a very keen awareness of humour and
indeed a great fondness for jokes, puns, comedy and the many other forms
of humour. Perhaps the connection is logic-logic is the sacred cow of
mathematics, while humour tends to turn logic on its head.

Maybe the people who are so quick to spot logical mistakes in
mathematics are also people who appreciate the crazy way in which logic is
used in humour. Throughout history several people have had a foot in both
camps. Names like Lewis Carroll, Stephen Leacock, Tom Lehrer,
L.J. Mordell, Robert Ainsley, and Leo Moser immediately spring to mind,
but much of the best mathematical humour seems to be anonymous or even
folk humour. Unfortunately, most mathematical humour is terribly well-
known and endlessly repeated to the point of tedium. In this humour corner,
to the best of our knowledge the first such in any mathematical journal, we
plan to publish new and original mathematical humour of a high standard
and refereed by a panel of international experts. So none of the adventures
of little Poly Nomial, or jokes with the punchline ‘There is now!” or a
polygon being described as a dead parrot, please.

We welcome new jokes, new riddles ,new howlers, and original
humorous pieces with a mathematical content. (Paradoxes welcome).

Here is a riddle I heard fairly recently—I think it is new (though one can
never be sure) and I think it is both funny and speaks volumes about the
public perception of the typical mathematician:

What is the difference between an introverted mathematician and an
extroverted mathematician? .

When an introverted mathematician is talking to you he looks at his shoes;
when an extroverted mathematician is talking to you he looks at your shoes.

If we do not receive suitable material for publication, I threaten to inflict
material of my own on readers until we do, so you have been warned!

DES MACHALE

(Author of Comic Sections, the book of Mathematical Jokes, Humour, Wit and Wisdom.)
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