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 THE MATHEMATICAL GAZE I'E

 Extensions of a theorem of Van Aubel

 JOHN R. SILVESTER

 1. Introduction and preliminaries

 A theorem of Van Aubel, which first appeared in [1], concerns the
 figure obtained by erecting squares on the sides of a quadrilateral, and
 considering various line segments such as the joins of the centres of
 opposite squares. In [2], parts of the theorem are extended to the case of (i)
 four similar rhombi, and (ii) four similar rectangles erected on the sides of a
 quadrilateral. Further, these two results are described as in some sense
 'dual' to each other. Here we show that they are in fact both special cases of
 a further extension of the original theorem (see Proposition 6, and the
 remarks that follow it), and we also find several extra squares in the original
 Van Aubel figure (Proposition 11).

 We shall adopt the general convention that points Al, B2, ... are
 represented as complex numbers by the corresponding lower case letters
 al, b2, .

 In a number of places we shall make use of the following well-known
 technical device:

 Equal Fractions Lemma: If several fractions are equal, then each of them is
 equal to any linear combination of their numerators divided by the
 corresponding linear combination of their denominators (provided this is not
 zero).

 Proof: If u = j forj = 1,2, ..., then for any A1,, 2 ... (with Ejjyj 0),
 Yi

 i iLjxj j Aj (uYj) u Yj Ajy
 X-jyj ZjXjyj Yi jyj

 Is this well-known? I've mentioned it once or twice in company recently,
 and got blank looks all round. In my youth, it featured regularly in school
 examinations, and I had the impression that most people were familiar with
 it. Thirty years ago, I remember using it to solve a newspaper brain-twister,
 and saying to a very eminent colleague (who shall remain nameless) that
 any reasonably intelligent non-mathematician ought to be able to follow the
 argument. 'If they were reasonably intelligent,' he remarked mildly, 'they
 wouldn't be non-mathematicians!'-but I digress.

 2. The diagonal ratio of a quadrilateral
 Let A1A2A3A4 be a quadrilateral, which might possibly be non-convex, or

 might even have two opposite sides crossing internally. The diagonals of
 A1A2A3A are the line segments A1A3 and A2A4, and we define the diagonal
 ratio (A1A2A3A4) to be the complex number given by the formula

 (A1A2A3A4) = al - a3
 a2 - a4
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 EXTENSIONS OF A THEOREM OF VAN AUBEL

 We shall say that the quadrilateral A1A2A3A4 is equidiagonal if the
 lengths A1A3, A2A4 are equal, that is, if |(A1A2A3A4)I = 1, and orthodiagonal
 if A1A31A2A4, that is, if (A1A2A3A4) is pure imaginary. So, for example, every
 rectangle is equidiagonal and every rhombus is orthodiagonal.

 If the quadrilateral F has diagonal ratio z, then a cyclic permutation, or a
 reversal (or both) of the vertex order of F will produce a quadrilateral with
 diagonal ratio z, -z, z-1 or -z-1, and it would make some sense to regard
 these complex numbers as equivalent, and then work with equivalence
 classes. However, we choose not to do this, and instead are careful at
 various steps to name vertices in the order that produces the 'correct' (i.e.
 desired) value of the diagonal ratio. Notice, however, that if z has modulus
 1 (respectively, if z is pure imaginary), then the same can be said of -z, z-~
 and -z-1.

 Now let A1A2A3A4 be a quadrilateral, and let B1B2B3B4 be the midpoint
 quadrilateral: specifically, let B1, B2, B3, B4 be the midpoints of A2A1, A1A4,
 A4A3, A3A2 respectively (note the order). It is a well-known theorem of
 Varignon that B1B2B3B4 is always a parallelogram; but a parallelogram can
 have any diagonal ratio. However, it is easy to show that the diagonal ratios
 z = (A1A2A3A4) and w = (B1B2B3B4) are related:

 Proposition 1: With z, w as above, we have w =
 z-1

 Proof:

 bl - b3 (a2 + al) - (a4 + a3) (al - a3)+ (a2 - a4) z+1

 b2 - b4 -1(a + a4)- 2(a3 + a2) (a - a3) - (a- a4) z- 1

 Proposition 2: Let A1A2A3A4 have midpoint parallelogram B1B2B3B4. Then

 (i) A1A2A3A4 is equidiagonal iff B1B2B3B4 is orthodiagonal, and

 (ii) A1A2A3A4 is orthodiagonal iff B1B2B3B4 is equidiagonal.

 z+l
 Proof: The M6bius transformationf : z - 1 is an involution, that is,

 z- 1
 f2 = 1, and it interchanges 0 with -1, i with -i, and 1 with oo.
 Consequently, it interchanges the unit circle z = 1 with the imaginary
 axis, and the result follows.

 Of course, this proposition has a much easier geometric proof (not using
 complex numbers), which we leave to the reader.

 Proposition 3: Letf : C -> C be a transformation, and for each point A
 writef (A) = A'. Then, for any quadrilateral A1A2A3A4,

 (i) if f is a direct (that is, orientation-preserving) similarity, then
 (AiA2A3A4) = (A1A2A3'A4');

 (ii) iff is a translation, then (A1A2A3A4) = (A1'A2A3'A4) = (A1A2'A3A4').
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 Proof: There exist u, v E C, with u : 0, such that, for all z e C, (i)
 f(z) = uz + v; (ii)f(z) = z + v. The result is immediate.

 The next proposition is about what we might call the side ratio4
 a2 - al

 of a parallelogram A1A2A3A4, though we shall simply regard this as the
 diagonal ratio of the degenerate quadrilateral A4A2AIAl:

 Proposition 4: Let A1A2A3A4 be a parallelogram, and let B1, B2, B3, B4 be the
 midpoints of A1A2, A2A3, A3A4, A4A1 respectively. Then
 (A4A2AA1) = (B3B2B1B4).

 Proof: Immediate from Proposition 3(ii) (or by direct calculation).

 3. A theorem about four parallelograms
 C2 /

 D4

 A1A2C2D1, A2A3C3D2, A3A4C4D3, A4A1C1D4 on the sides, and let the
 parallelograms have centres B1, B2, B3, B4 respectively. Let the midpoint of

 CkDk be Ek, k = 1,2,3,4. Then

 (i) B1B2B3B4 is equidiagonal iff E1E2E3E4 is orthodiagonal, and
 (ii) B1B2B3B4 is orthodiagonal iff E1E2E3E4 is equidiagonal.

 (See Figure FIGURE 1 shows the second case, where BBBB4 is

 orthodiagonal. For claritven a qucase whdrilaterall four of therect parallelograms are

 AIA2C2A, A2A3C3D2, A3A4C4D3, A4AICID4 on the sides, and let the
 parallelograms have centres 2I, B2, B3, B4 respectively. Let the midpoint of
 CkDkbeEk,k = 1,2,3,4. Then

 (i) BjB2B3B4 is equidiagonal iff EjE2E3E4 is orthodiagonal, and

 (ii) BjB2B3B4 is orthodiagonal iff EjE2E3E4 is equidiagonal.
 (See Figure 1, which shows the second case, where BjB2B3B4 is
 orthodiagonal. For clarity, a case where all four of the parallelograms are
 external to A1A2A3A4 is shown, though in fact each one (separately) can be
 erected either externally or internally.)

 Proof: B1 is the midpoint of A1C2, so bl = (al + c2), whence c2 = 2bl - al;
 similarly d2= 2b2 - a3, and so e2 = (2+ d2) = bl + b2 - ?(al + a3).
 Likewise e3 = b2 + b3 - (a2 + a4), e4 = b3 + b4 - ?(al + a3) and 2 2U 4~e U 3
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 el = b4 + bl - 1 (a2 + a4). By two applications of Proposition 3(ii) and
 one application of Proposition 3(i), it follows that E1E2E3E4 has the same
 diagonal ratio as the midpoint parallelogram of B1B2B3B4, and the result
 follows from Proposition 2.

 4. Theorems about four similar parallelograms

 For the rest of this paper, we shall be concerned with a special case of
 Figure 1, where the four parallelograms are directly similar; but the vertices
 do not correspond in perhaps the most obvious order. We write
 P1P2P3P4 Q1Q2Q3Q4 to mean that P1P2P3P4 is directly similar to Q1Q2Q3Q4
 with Pk corresponding to Qk, for each k. We shall assume that

 A1A2C2D1 - A3C3D2A2 - A3A4C4D3 - A1C1D4A4. (1)

 The points Ek are defined as before, throughout. See Figure 2.
 C3
 ? E3 D3

 E2 . "

 C2r/' B2 P s \

 -1 a2- B3 C4

 \ ./'
 n~ D //./.

 Ci Aq A
 \\J

 C1 D4

 FIGURE 2: Four similar parallelograms

 Proposition 6: Given (1), we have (B1B2B3B4) = (D1A2AIA).

 Proof: By Proposition 3(i), we have

 (D1A2AiAJ) = (A2C3A3A3) = (D3A4A3A3) = (A4CA1AI) = u (say),

 that is,

 2bl - a2 - al a2 - a3 2b3 - a4 - a3 a4 - al

 a2 - al 2b2 - a2 - a3 a4 - a3 2b4 - a4 - al

 Using the equal fractions lemma,

 (2bl-a2-al) + (a2-a3) - (2b3-a4-a3) - (a4-al)
 U= (a2-al) + (2b2-a2-a3) - (a4-a3) - (2b4-a4-al)

 which is just B1B2B3B4.

 In particular, BB3= , A and also, if the lines B1B3 and B2B4 meet at
 B2B4 AiA2

 0, then ZB1OB2 = ZD1A1A2. From Proposition 5, with the Ek defined as

 5
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 E1E3 A2D1
 before, - = and also, if the lines E1E3 and E2E4 meet at Q, then

 E2E4 A1C2
 ZE1QE2 = ZA2BlA1.

 As special cases, if A1A2C2D1 is a rectangle, then B1B2B3B4 is
 orthodiagonal and E1E2E3E4 is equidiagonal; and if A1A2C2D1 is a rhombus,
 then B1B2B3B4 is equidiagonal and E1E2E3E4 is orthodiagonal. This shows
 that [2, Theorems 5 & 6], rather than being in some sense 'dual' to each
 other, are in fact two special cases of the same theorem. Van Aubel's
 theorem itself is the case where A1A2C2D1 is a square, so that B1B2B3B4 is
 both equidiagonal and orthodiagonal, likewise E1E2E3E4.

 We now turn to the question of when the four lines B1B3, B2B4, E1E3,
 E2E4 are concurrent, that is, when the points O and Q coincide. First, an
 easy special case:

 Proposition 7: Given (1), if A1A2A3A4 is a parallelogram, then the six lines
 A1A3, A2A4, B1B3, B2B4, E1E3, E2E4 are concurrent.

 Proof: One does not need complex numbers for this: if A1A3 and A2A4 meet
 at P, then the entire diagram is symmetrical by a half-turn about P; see
 Figure 3. (Nonetheless, the reader might like to check that, if
 al + a3 = a2 + a4 = 2p, then also bl + b3 = b2 + b4 = el + e3 = e2 + e4 = 2p.)

 E2 B2

 E3

 In the general case, let us take O as the origin; so now B1, B2 and O are

 I/ .~._ ~ /' A 3
 AL , .-' ;~. ''B3

 FIGURE 3: Proposition 7, and Proposition 8, case (ii)

 In the general case, let us take 0 as the origin; so now B1, B2 and 0 are
 lik sb2 bN - b3

 collinear, and thus -E R; likewise - e R. Now u = by
 b3 b4 b2 - b4

 Proposition 6, and it follows that u is a real multiple of 1, likewise of b2
 b3 b4

 So there exist A, e , with b = Au and = Yu.
 b2 b4

 Next,

 e2 2b + 2b2 - a - a3

 e4 23 + 2b4 - a - a3

 6
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 From (2),

 2bl - a2 - a a2 - a3
 U =

 a2 - al 2b2 - a2 - a3

 (2bl - a2 - al) + (a2 - a3) 2b - al - a3
 (a2 - al) + (2b2 - a2 - a3) 2b2 - a - a3
 2(bl - ub2) 2(b3 - ub4)

 whence a1 + a3 = , and similarly al + a3 =
 1 -u 1 -u

 So, substituting back,

 e2 (1- u)(bl + b2)- (bl - ub2) b2 -ubl = b2l 1-Au22
 e4 (1 - u)(b3+ b4)- (b3- ub4) b4- ub3 \b4\ 1 - /uu2
 It follows that

 - R < => (1 - AU2)(1 - Uii2) E R
 e4

 X= 1 + 4/(uu)2 - Au2 - Iu2 E R

 (u 2 + 1+ U(U) - x)Uu2 + (1 + (u)2 2 + 2)) E

 <= (u - A)u2 E R.

 e2 2
 But,u - A E R, and so 2- e R iff either A = u or u2 E . This leads to:

 e4

 Proposition 8: Given (1), the four lines B1B3, B2B4, E1E3, E2E4 are
 concurrent iff

 (i) A1A2C2D1 is a rectangle, or
 (ii) A1A2A3A4 is a parallelogram.

 (See Figures 3 and 4. The sufficiency of (i) is part of [2, Theorem 5].)

 Proof: If (i) holds, then (A1A2C2D1) = u is pure imaginary, so that u2 e R,

 and by the above calculation it follows that 2- E and thus E2E4 passes
 e4

 through 0; similarly, - E 1R, and E1E3 passes through O also. If (ii) holds,
 e3

 use Proposition 7.

 So now suppose we are not in case (i). We shall assume that u is not
 real, for if it is, then we are in a degenerate case in which the parallelograms
 collapse, and C2, D1 lie on the line A1A2. The reader might like to show that
 when this happens the four lines B1B3, B2B4, E1E3, E2E4 are all parallel, so
 that they are concurrent at a point at infinity.

 7
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 E3

 \ B4 /
 BAl . ....

 FIGURE 4: Proposition 8, case (i)

 If we are not in case (i) and u is not real, then u2 is not real either: so, by
 the above,

 E2E4passes through 0 = A = u

 bl b3

 b2 b4

 bl, b3 bl - b3

 b2 b4 b2 - b4

 = bl - ub2 = = 3 - ub4

 = al + a3 = 0.

 Similarly, if EIE3 passes through 0, then a2 + a4 = 0. So if the four lines
 B1B3, B2B4, E1E3, E2E4 are concurrent and we are not in case (i), then
 al + a3 = 0 = a2 + a4, and we are in case (ii).

 Proposition 9: In the rectangular case (Proposition 8, case (i)), B1B3 and
 B2B4 are the bisectors of the angles between E1E3 and E2E4 at 0. (This also
 appears in [2].)

 Proof: We need to show that ZE20B2 = ZB20E3, and for this we just need

 e2e3 e R. As before, we have
 bi2

 bl - ub2 b2 - Ub e2 = bl + b2 - (al + a3) = bl + b2 - =
 1 -u 1-u

 and, by a similar calculation,

 b3 + ub2 b2 + ub3
 e3 = b2 + b3 - (a2 + a4) = b2 + b3 - =

 + u +u

 so that

 e2e3 1 b1 ) b 3)
 b2 1 -2 b2 b2j 2 2 u 21

 8
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 Since each of 1 and b 3 is a real multiple of u, and u2 E [R, we see that
 b2 b2

 eE R, and the result follows.
 b2

 We now return to the general case (1), where the four similar
 parallelograms are not necessarily rectangles. We are going to find two
 more parallelograms similar to these four. To this end, let F1, F2 be the
 midpoints of B1B3, B2B4 respectively; let G1, G2 be the midpoints of E1E3,
 E2E4 respectively; and let H1, H2 be the midpoints of A1A3, A2A4
 respectively. Of course, if AA2A3A4 is a parallelogram, then the six points
 we have just defined will all coincide; so let us assume that A1A2A3A4 is not a
 parallelogram. We have

 2fl = bl + b3,

 2f2 = b2 + b4,

 2gl = el + e3 = bl + b2 + b3 + b4 - (a2 + a4),

 2g2 = e2 + e4 = bl + b2 + b3 + b4 - (al + a3),

 2hl = al + a3,

 2h2 = a2 + a4.

 It is immediate thatfl + f2 = gl + h2 = g2 + hi, so that the midpoints of
 F1F2, G1H2 and G2H1 coincide. Thus the quadrilaterals F1G1F2H2, G2F1H1F2
 and G1G2H2H1 are parallelograms.

 Proposition 10: Given (1), and assuming A1A2A3A4 is not a parallelogram,
 then A1A2C2D1 - F1GlF2H2 - G2F1H1F2.

 Proof: We have

 (H2G ) = h2 - fl a2 + a4 - bl - b3 (H2 G IF, ^ = =and
 gl - fl b2 + b4 - a2 - a4

 (F2 2) = f2 - g2 al + a3 - bl - b3 (F2F G2G2) =
 fl - g2 al + a3 - b2 - b4

 Let u = (D1A2A1Ai), as in (2). From (2), and the lemma on equal fractions,
 -(2bl-a2-al) ? (a2-a3) - (2b3-a4-a3) ? (a4-a1)

 -(a2-al) ? (2b2-a2-a3) - (a4-a3) ? (2b4-a4-al)
 Taking the four upper signs, we have u = (H2G1F1F1), and taking the four
 lower signs, we have u = (F2F1G2G2).

 9
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 5. Van Aubel revisited

 Proposition 11: Suppose the four parallelograms of condition (1) are
 squares. Then (using the above notation)

 (i) B1B2B3B4 is equidiagonal and orthodiagonal;
 (ii) E1E2E3E4 is equidiagonal and orthodiagonal;
 (iii) the four lines B1B3, B2B4, E1E3, E2E4 are concurrent and equally

 inclined;

 (iv) the midpoint parallelogram of B1B2B3B4 is a square;

 (v) the midpoint parallelogram of E1E2E3E4 is a square;

 (vi) G1 = H1, G2 = H2, and (provided A1A2A3A4 is not a parallelogram)
 F1G1F2G2 is a square; and finally

 (vii) the square in (iv) is the midpoint parallelogram of the square in (v).

 See Figure 5, where for clarity we have taken A1A2AA4 convex and the
 squares external; we invite the reader to draw the corresponding diagram for
 some other cases, e.g. a case where the four original squares are erected
 internally on the sides of A1A2A3A4, or a case where two opposite sides of
 A1A2A3A4 cross internally.

 .E2 _ E3 E2 :" /A..\

 \: 1 \

 E El \

 \ .7

 FIGURE 5: Proposition 11

 Proof: Most of this is done already: (i) follows from Proposition 6, as
 previously remarked, and then (ii) follows from (i) and Proposition 5. Then
 (iii) is Proposition 8, case (i), together with Proposition 9. This far, the
 theorem is Van Aubel's theorem, as stated in [2].

 Next, (iv) and (v) follow from (i) and (ii) together with Proposition 2.

 10
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 Finally, we prove (vi) and (vii). From Proposition 10, F1G1F2H2 and
 G2F1HlF2 are directly similar, and are squares. Since they share the opposite
 vertices F1 and F2, they coincide, so G1 = H1 and G2 = H2, which
 completes (vi). (The reader is invited to check that G1 = H1 and G2 = H2
 even if A1A2A3A4 is a parallelogram.) From gl = hi we deduce that

 bl + b2 + b3 + b4 = al + a2 + a3 + a4. (3)

 There is an amusing alternative way to derive (3): we have

 bl - al b2 - a2 b3 - a3 b4 - a4
 = i = = z (or - i).

 bl - a2 b2 - a3 b3 - a4 b4 - bl

 But here the numerators and denominators both add up to
 bl + b2 + b3 + b4 - al - a2 - a3 - a4, so if this is not zero, the lemma
 on equal fractions gives us 1 = i (or -i), a contradiction, and so (3)
 follows, again.

 We now have

 = +2 b+ a2- 2 + ba3
 el+2e2+e3= b4+bl- a2 4) + 2(b +b- a +a3 (b + b3- 2 4) 2 2 2

 = 3bl + 3b2 + b3 + b4 - (al + a2 + a3 + a4)

 = 2(bl + b2),
 or

 2 2 2 2

 which says that the midpoint of the line joining the midpoints of E1E2 and
 E2E3 is the same as the midpoint of B1B2. A similar calculation for the other
 three vertices finishes (vii).

 As a parting shot, we invite the reader to draw the diagram in the special
 case where A3 = A4, so that in fact A3 = A4 = B3 = C4 = D3. We then
 obtain a theorem about three squares erected on the sides of AA1A2A3,
 considered as a degenerate quadrilateral A1A2A3A3, so we can add to this the
 corresponding theorems about the degenerate quadrilaterals A1A2A2A3 and
 A1A1A2A3. Part of what results is a familiar theorem about the concurrency
 of the lines joining A1, A2, A3 to the centres of the opposite squares (at the
 orthocentre of the triangle formed by these centres), but Propostion 11 also
 gives us nine other squares to be drawn within the figure. The author's
 recommended method for drawing this is to use a dynamic geometry
 program to produce Figure 5, and then move A4 to coincide with A3. A
 macro can be used to reproduce this figure so as to superimpose the three
 degenerate quadrilaterals, and judicious use of colouring helps make sense
 of the resulting collection of lines and squares.

 11
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 Humour Corner

 At first glance, there does not seem to be much of a connection between
 mathematics and humour ; mathematics is considered to be rather serious,
 while humour is always rather flippant. And yet, my experience is that most
 mathematicians I have met have a very keen awareness of humour and
 indeed a great fondness for jokes, puns, comedy and the many other forms
 of humour. Perhaps the connection is logic-logic is the sacred cow of
 mathematics, while humour tends to turn logic on its head.

 Maybe the people who are so quick to spot logical mistakes in
 mathematics are also people who appreciate the crazy way in which logic is
 used in humour. Throughout history several people have had a foot in both
 camps. Names like Lewis Carroll, Stephen Leacock, Tom Lehrer,
 L.J. Mordell, Robert Ainsley, and Leo Moser immediately spring to mind,
 but much of the best mathematical humour seems to be anonymous or even
 folk humour. Unfortunately, most mathematical humour is terribly well-
 known and endlessly repeated to the point of tedium. In this humour corer,
 to the best of our knowledge the first such in any mathematical journal, we
 plan to publish new and original mathematical humour of a high standard
 and refereed by a panel of international experts. So none of the adventures
 of little Poly Nomial, or jokes with the punchline 'There is now!' or a
 polygon being described as a dead parrot, please.

 We welcome new jokes, new riddles ,new howlers, and original
 humorous pieces with a mathematical content. (Paradoxes welcome).

 Here is a riddle I heard fairly recently-I think it is new (though one can
 never be sure) and I think it is both funny and speaks volumes about the
 public perception of the typical mathematician:

 What is the difference between an introverted mathematician and an
 extroverted mathematician?

 When an introverted mathematician is talking to you he looks at his shoes;
 when an extroverted mathematician is talking to you he looks at your shoes.

 If we do not receive suitable material for publication, I threaten to inflict
 material of my own on readers until we do, so you have been warned!

 DES MACHALE

 (Author of Comic Sections, the book of Mathematical Jokes, Humour, Wit and Wisdom.)
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 mathematics, while humour tends to turn logic on its head.

 Maybe the people who are so quick to spot logical mistakes in
 mathematics are also people who appreciate the crazy way in which logic is
 used in humour. Throughout history several people have had a foot in both
 camps. Names like Lewis Carroll, Stephen Leacock, Tom Lehrer,
 L.J. Mordell, Robert Ainsley, and Leo Moser immediately spring to mind,
 but much of the best mathematical humour seems to be anonymous or even
 folk humour. Unfortunately, most mathematical humour is terribly well-
 known and endlessly repeated to the point of tedium. In this humour corer,
 to the best of our knowledge the first such in any mathematical journal, we
 plan to publish new and original mathematical humour of a high standard
 and refereed by a panel of international experts. So none of the adventures
 of little Poly Nomial, or jokes with the punchline 'There is now!' or a
 polygon being described as a dead parrot, please.

 We welcome new jokes, new riddles ,new howlers, and original
 humorous pieces with a mathematical content. (Paradoxes welcome).

 Here is a riddle I heard fairly recently-I think it is new (though one can
 never be sure) and I think it is both funny and speaks volumes about the
 public perception of the typical mathematician:

 What is the difference between an introverted mathematician and an
 extroverted mathematician?

 When an introverted mathematician is talking to you he looks at his shoes;
 when an extroverted mathematician is talking to you he looks at your shoes.

 If we do not receive suitable material for publication, I threaten to inflict
 material of my own on readers until we do, so you have been warned!

 DES MACHALE

 (Author of Comic Sections, the book of Mathematical Jokes, Humour, Wit and Wisdom.)
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