Two generalizations of the Napoleon theorem

Dao Thanh Oai

April 2, 2015

Abstract

I give two generalizations of the Napoleon theorem. The first generalization associated with a hexagon. The second generalzation associated with the Kiepert hyperbola.

Theorem 1. Let $A B C D E F$ be a hexagon, constructed three equilaterals $A G B, C H D, E I F$ all externally or internally (as in the figure 1). Let A_{1}, B_{1}, C_{1} be then the centroid of $F G C, B H E, D I A$ respectively. Let A_{2}, B_{2}, C_{2} be the centroid of $E G D, A H F, C I B$ respectively. Then $A_{1} B_{1} C_{1}$, and $A_{2} B_{2} C_{2}$ form an equilateral triangle.

Figure 1
The theorem 1 publish by the author in Cut The Knot web site, you can see the proof of theorem 1 by complex number in [1].

When we put $A=F, B=C, D=E$ theorem 1 is the Napoleon theorem.
Proposition 2. Two triangles $A_{1} B_{1} C_{1}$, and $A_{2} B_{2} C_{2}$ are perpective.

Theorem 3. Let $A B C$ be a triangle, F be the first (or second) Fermat point, let K be the point on the Kiepert hyperbola. Let P be the point on line FK. The line through P and perpendicular to $B C$ meet $A K$ at A_{0}. Define A_{0}, B_{0}, C_{0} cyclically. Show that $A_{0} B_{0} C_{0}$ is an equilateral triangle. This triangle homothety to the outer(or inner) Napoleon triangle.

Figure 2
When $(F=X(13)$ and $K=X(17)$ and $P=X(3))$ or $(F=X(14)$ and $K=X(18)$ and $P=X(3))$ the triangle $A_{0} B_{0} C_{0}$ is outer or inner Napoleon triangle respectively.

The theorem 3 publish me in [2]. A proof of theorem 3 by Telv Cohl as follows:
Lemma 4. (USA TST 2006, Problem 6) Let $A B C$ be a triangle. Triangles $P A B$ and $Q A C$ are constructed outside of triangle $A B C$ such that $A P=A B$ and $A Q=A C$ and $\angle B A P=\angle C A Q$. Segments $B Q$ and $C P$ meet at R. Let O be the circumcenter of triangle $B C R$. Prove that $A O \perp P Q$.

Let O^{\prime} be the circumcenter of $\triangle A C Q$. Let M, N be the midpoint of $C Q, C R$, respectively . Easy to see $R \in\left(O^{\prime}\right)$.
Since O^{\prime}, M, N, C are concyclic, so we get $\angle A O^{\prime} O=\angle Q C P$. ... (1) Since $\angle R O^{\prime} O=$ $\angle B Q C, \angle O^{\prime} O R=\angle C B Q$, so we get $\triangle O R O^{\prime} \sim \triangle B C Q$, hence $\frac{O^{\prime} A}{C Q}=\frac{O^{\prime} R}{C Q}=\frac{O^{\prime} O}{Q B}=\frac{O^{\prime} O}{C P} . \ldots$ (2)

From (1) and (2) we get $\triangle A O O^{\prime} \sim \triangle Q P C$, so from $O O^{\prime} \perp P C$ and $A O^{\prime} \perp Q C \Longrightarrow A O \perp$ $Q P$.

Lemma 5. Let D be a point out of $\triangle A B C$ satisfy $\angle D B C=\angle D C B=\theta$. Let E be a point out of $\triangle A B C$ satisfy $\angle E A C=\angle E C A=90^{\circ}-\theta$. Let F be a point out of $\triangle A B C$ satisfy $\angle F A B=\angle F B A=90^{\circ}-\theta$. Then $A D \perp E F$.

Let $B^{\prime} \in A F, C^{\prime} \in A E$ satisfy $A B=A B^{\prime}, A C=A C^{\prime}$ and $T=B C^{\prime} \cap C B^{\prime}$.
Easy to see $\triangle A B B^{\prime} \cup F \sim \triangle A C C^{\prime} \cup E \Longrightarrow E F \| B^{\prime} C^{\prime}$.
From $\triangle A B^{\prime} C \sim \triangle A B C^{\prime} \Longrightarrow \angle B T C=180^{\circ}-\left(90^{\circ}-\theta\right)=90^{\circ}+\theta$, so combine with $\angle D B C=\angle D C B=\theta$ we get D is the circumcenter of $\triangle B T C$, hence from lemma 1 , we get $A D \perp B^{\prime} C^{\prime}$. i.e. $A D \perp E F$

From the lemma we get the following property about Kiepert triangle : The pedal triangle of the isogonal conjugate of $K_{90-\phi}$ WRT $\triangle A B C$ and the Kiepert triangle with angle ϕ are homothetic . (Moreover, the homothety center of these two triangles is the Symmedian point of $\triangle A B C!)(1)$

Let H_{b}, H_{c} be the orthocenter of $\triangle F C A, \triangle F A B$, respectively . (H_{b}, H_{c} also lie on the Kiepert hyperbola of $\triangle A B C$)

Easy to see all $\triangle A_{0} B_{0} C_{0}$ are homothetic with center K, so it is suffices to prove the case when P coincide with F.

From Pascal theorem (for $C K B H_{c} F H_{b}$) we get $A F \perp B_{0} C_{0}$. Similarly, we can prove $B F \perp C_{0} A_{0}$ and $C F \perp A_{0} B_{0}$, so $\triangle A_{0} B_{0} C_{0}$ and the pedal triangle of the isogonal conjugate of F WRT $\triangle A B C$ are homothetic, hence from (1) we get $\triangle A_{0} B_{0} C_{0}$ and the outer (or inner) Napoleon triangle are homothetic .

You can see Telv Cohl's proof in [3][4][5].

References

[1] A. Bogomolny, A Final Chapter of the Asymmetric Propeller Story, Junly 2013. Available at http://www.cut-the-knot.org/m/Geometry/FinalAsymmetricPropeller.shtml
[2] O. T. Dao, Advanced Plane Geometry, message 2261, January 24, 2015.
[3] http://www.artofproblemsolving.com/Forum/viewtopic.php?f=48\&t=622242
[4] http://www.artofproblemsolving.com/Forum/viewtopic.php?f=48\&t=621954
[5] http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46\&t=148830
Dao Thanh Oai, Cao Mai Doai, Quang Trung, Kien Xuong, Thai Binh, Viet Nam. E-mail address: daothanhoai@hotmail.com

