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ABSTRACT

This paper reviews two recent studies which suggest a radical rethink of the place of hierarchical
classification in the Van Hiele theory. Results from both studies indicate that hierarchical class
inclusion may develop independently from deductive thinking. Theoretical as well as empirical
evidence suggest that the ordering of the various stages of development in the Van Hiele ﬁnodel is

not necessarily independent of the teaching strategy used.



INTRODUCTION’

Plane geometry in the Durell (1939) style forms an important component of the high school
mathematics curriculum in South Africa. Informal geometry is taught from Grade 4 to Grade 8,
while in Grade 9 the curriculum prescribes an axiomatized version of elementary plane geometry.
This emphasis on a formalized deductive system in Grade 9 seems to have caused many learning

problems.

The author is presently project leader of the RUMEUS research project on geometry, a
continuation of the USEME teaching experiment of 1977/78 (Human et al, 1984). Further studies
have focussed on developing testing material for certain mathematical processes in geometry
(Joubert, 1980}, as well as using groupwork for the teaching of the properties of quadrilaterals and

. tﬁé.ir cla.ssiﬁ.cation (De Vries, 1980).

This article discusses one of the theoretical starting points, namely the Van Hiele theory, which has
influenced and partly guided our research at RUMEUS into students’ problems in learning formal
geometry. In turn, our teaching experiments and research findings have strongly influenced our
understanding of the Van Hiele model and even led to some refinement and elaboration. In this
article the results of two recent research studies by Malan (1986) and Njisane (1986) will be

reviewed in relation to the Van Hiele model.

THEORETICAL FRAMEWORK
THE VAN HIELE LEVELS

The most important aspect of the Van Hiele theory is the distinction of five levels in the mastery of
geometry, and the hypothesis that they form a learning hierarchy. Thus, someone cannot be at a
specific level without having passed through the preceding levels. Throughout this paper the
numbering system of Usri'skin (1982) and Senk (1983 & 1984) will be used for the levels. The general
characteristics of each level is given below, as adapted from Usiskin (1982), Senk (1983) and Hoffer

(1983):

*  The research projects reported in this paper were supported by the South African Human
Science Research Council (HSRC). Any opinions, findings, conclusions or recommendations
expressed are those of the author and the researchers involved and do not necessarily reflect
the views of the HSRC.
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Level 1: Recognition. Students recognize figures by their global appearance. They recognize

triangles, squares, parallelograms, and so forth, but they do not explicitly identify properties of

these figures.

Level 2: Analysis. Students analyse properties of figures and learn the appropriate technical

terminology for describing them, but they do not explicitly interrelate figures or properties of

figures.

Level 3: Ordering. Students logically order properties of figures by short chains of deduction and

understand interrelationships between figures {e.g. class inclusions).

Level 4: Deduction. Students develop longer sequences of statements to deduce one statement from

another, and also understand the significance of deduction, the role of axioms, theorems and proof.
Level 5: Rigor. Students analyse various deductive systems with a high degree of rigor, while

understanding such properties of a deductive system as consistency, independence and

completeness of axioms.

For more information on the levels and the nature of the theory, consult Wirszup (1976}, Mayberry

(1981, 83), Fuys (1986) and a recent study by Burger & Shaughnessy (1986) in this journal.

HIERARCHICAL CLASS INCLUSION

Although there seems to be a consensus amongst the above-mentioned American theorists and
researchers that hierarchical class inclusion {e.g. a square is a rectangle) occurs at level 3
(Ordering), there seems to be some confusion in the Van Hiele literature itself. For instance, in
Begrip en Inzicht Pierre van Hiele argues as follows that class inclusion can already occur at level! 2

{their Level 1);

"The development of a network of relations results in a rhombus becoming a symbol
for a large set of properties. The relationship of the rhombus to other figures is now
determined by this collection of properties. Students, who have progressed to this
level, will answer the question of what a rhombus is by saying: 'A rhombus is a
quadrilateral with four equal sides, with opposite angles equal and with
perpendicular bisecting diagonals which also bisect the angles.' On the grounds of
this, a square now becomes a rhombus."*

Freely translated from the original Dutch (Van Hiele, 1973:93).
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This same point is made by Dina van Hiele in Fuys et al (1984: 222) when writing:

... at level zero, a square is not perceived as a rhombus; at the first level of thinking,
it is self-evident that a square is a rhombus.”

However, Pierre van Hiele in Fuys et al {1984 245) seems to contradict himself and his wife when

writing with reference to Level 2 (their first level):

"But at this level ... a square is not necessarily identified as being a rectangle.”

Consequently, one of the objectives underlying our research has been to try and clarify the level at
which hierarchical classification is supposed to occur: does it precede the informal deductive

thinking of Level 3, or coincide with it?

DEDUCTIVE REASONING AND PROOF

According to the Van Hiele theory, deductive reasoning first occurs on Level 3 when the network of
logical relationships/ implications between properties is established, while the meaning of formal
deduction and proof is only understood at the next level. Students who are on Le.vels 1 and 2 with
regard to a specific topic will not understand instruction aimed af the activities and meanings of the
higher levels. For instance, when a teacher provides a deductive proof that the diagonals of a
rectangle are equal, the meaning of the proof lies in expliciting the logical relationships between
the properties, not in establishing the validity of the properties themselves. A student at Level 1 or
2, who does not possess this network of logical implications, experiences such a proof as an attempt
at the verification of the result. However, since he (or she) does not doubt the validity of his (or hér)
empirical observations, he {ar she) experiences such a proof as meaningless: "proving the obvious",
The Van Hiele theory therefore strongly criticizes any form of geometry teaching wherein
deductive reasoning and proof plays a major role, if students cannot yet see the meaning of it in

terms of logical systematization (Van Hiele ,1973; 97} .

However, since proof in mathematics has other meanings than systematization, we believe that
proof may be meaningful to students at levels lower than Level 4. In accordance with Bell (1976: 24)

we distinguish the following three meanings or functions of proof in mathematics:

- verification (concerned with the truth of a proposition).
- explanation (conveys insight into why it is true),

- systematization (the organization of results into a deductive system),



Since the everyday usage of the term "proof” conveys with it a meaning of "convinee", "checking",
"making sure”, "removing all doubts”, we believe that students' first encounter with proof shouid
preferably be within the context of the verification (or explanation) of some startiing or surprising
results and not in the context of systematization. In the USEME {eaching experiment in 1977-1978
in 10 schools, students were successfully introduced to situations they had to "explain” or "verify”
relatively early (Human et al, 1984). For instance, explaining why a parallelogram was always
formed by connecting the midpoints of the adjacent sides of a quadrilateral. It seems that proof in
this sense may perhaps be experienced as meaningful by students even at Level 2. This
interpretation of the various meanings of proof and their relationships to the Van Hiele levels was

also successfully implemented in a teaching experiment with Boolean Algebra (De Villiers, 1986b).

Closely associated with children's understanding of the significance of deduction, is their
* perception of the nature of axioms and their role in mathematics. We believe that the level change
from Level 3 to Level 4 also involves a change fram a classical perspective an the nature of axioms
(intuitively accepted) to a modern perspective (accepted as hypothetical starting points of a
mathematical system}. Freudenthal (1973: 451-461) has furthermore pointed out that the
axiomatization of geometry should be carried out in stages, first "locally” and then gradually more
"globally". Although local and global axiomatization respectively seem to correspond to Level's 3
and 4, we feel that this distinction does not really involve a level change, but is merely a

progressive sophistication of thought.

NJISANE'S STUDY

MAIN OBJECTIVE OF THE RESEARCH

This research project (Njisane, (1986)) was aimed at finding out if different geometric thought

categories (GTC's) form Guttman scales and how they correspond with the Van Hiele model.

SAMPLE

The sample consisted of 4015 high school pupils in grades 9 to 12, in May/June 1984. This was the
total population of pupils taking mathematics in a radom sample of high schools of the Kwazulu
Department of Education, situated in the province of Natal. The schools ranged from small, rural

schools to big inner-city schools.

THE INSTRUMENT

The test consisted of 56 open-ended questions ranging from simple questions like indicating

alternate angles when paralle! lines were given, listing the properties of a given figure like a
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parallelogram, to questions requiring the interpretation of formal definitions and the construction
of formal proofs. Most items dealt with traditional content like parallel lines, perpendicular lines,
technical terms, isosceles triangles, congruent triangles, parallelograms, rectangles, logical
inferences, significance of deduction, perspective on the difference between an axiom and a
theorem, etc. Furthermore in several items, pupils were asked to give reasons for their responses
providing extremely useful information on the nature of their conceptual understanding. A copy of

the test and marking scheme is available on request.

PUPILS

Njisane’s research was aimed at establishing a non-prejudiced description of progress in geometric
thinking. This was facilitated by distinguishing a number of different geometric thought categories

(GTC's) ea'lcl'i'bé'i”ng reflected in a number of test items. The most important categories are:
- recognition and representation of figure-types (Z) (Van Hiele 1)

- use and understanding of terminology (A)(Van liele 2)

- verbal description of properties of a figure type (E) (Van Hiele 2)

- hierarchical classification (B} (Van Hiele 3)

- one step deduction (C) (Van Hiele 3)

- longer deduction (D) (Van Hiele 4).

[Place figures 1 and 2 more or less here]

Examples of test items testing each of the above GTC's are given in Figures 1 and 2. Details on how
students performed on the full range of GTC's are given in De Villiers and Njisane (1987). Using a
50% criterion for proficiencyin a specific GTC, it was found that hierarchical classification (B) was
the most difficult, closely followed by longer deduction (D) and one step deduction (C) (See Table 1).
From these results it is clear that these students find hierarchical classification much more
difficult than the other GTC's. It is also significant that, compared to the other GTC's, very little
improvement in hierarchical classification occurred through the grades. Guttman analyses were
also done on the results for all the GTC's and various subsets thereof, producing reproducibility
coefficients and scalability coefficients above the required criteria of 0,9 and 0,6 respectively. This

suggests a learning hierarchy among the GTC's in Table 1 from left to right.

{Place table 1 more or less here]



1, Write YES if the two lines look like parallel lires. 2. Orawa right-angled triangle

Write NO if the two lines are not parallel.

Write I DO NOT KNOW if you do not know whether the lines are

Farallel or net parallel,
(a) / sa s rrrRe s Ems enay

{b) eerhasarersae s

(d} Gesvevrrvasnea

-

(Recognition and representation of figure-types {Z) )

3.  what are lines like the rollowing called? 4. Mark any two alternate angles with crosses

/

(Use and undernstanding of terminofogy {A))
5. Describe all the gifferent properties of the parallelograms. 6. what is & rectangle?

{Wenbal deseripiion of properties of a gigure-type (E))

(a) How big is 3 in the figure given below? . -

7. 8. A line PQ meets another line AB at @ such that AGP = B
{The figure is drawn accurately)

ta} 1Is Pq_L aAB? )

(6} Give reasons for your answer,

LI I N

3

(b) How did you obtain your answer?

(One step deduction(C))

FIGURE 1: EXAMPLES OF TEST ITEMS TESTING GTC's




1 Two different persons were asked to indicate all trhe paralleloe=
.

2. (a) 1Is every square also a rectangle?
grams in a given seb of figures with cros:ses, (b) Give reasons for your answer.
(a) Which person vorrectly indicated the parallielogram-
(A or B or NOBODY)? PO
Person A

X

Person B

{Hienarchical classification (B))

3, Ir the figure AB and CD are 4'(a) Are you convinced (sure) that the
straight lines that meet at pase angles of an isosceles
£ such that AE=FC and DE=EB triangle are always equal?
E
(b} Explain why you zre supe or why you are not sur
{a) What cob you say about 1 and 27 cranlan

(b} why do you say =o?

(Longen deduction (D})

FIGURE 2: EXAMPLES OF TEST ITEMS TESTING CGTC'sg




GRADE z A £ [ ) B STUDENTS _
9 38,8% 11,6% 5,3% 2,5% 0,2% 0,5% 1192
10 58,8% 30,9% 23,5% 14,04 2,9% 1,7 1697
1 54,3% 68,1% 65,4% 44,3% 22,2% 5,0% 655
12 90,0% | 84,0% | 68,3% | 63,38 | 42,6% | S, 1% 178

TABLE

1

STUDENT PERFORMANCES ON GTC's




From these results the following general conclusions were drawn:

(i) Although the GTC's generally support the Van Hiele model, hierarchical thinking seems
neither a prerequisite for deductive thinking (a Level 2 characteristic) nor does it seem to
develop in conjunction with the development of the logical implications between properties

{a Level 3 characteristic).

(ii) Simpler one-siep deduction may be possible at levels lower than Level 3 or 4, as evidenced
by the fact that the GTC's verbal description (E) and one step deduction (C) were more or
less of the same level of difficulty (See Table 1) and continually interchanged in the

Guttman analyses, depending on the division points chosen (Njisane, 1986).

(ili}  The fact that very little improvement over the grades occurred in hierarchical classification
cor.n.pa.l.'ed”to .d.et.it.x.(.:ti.c.}r.l.,.is.;.)rbi.)abiy in part attributable to the fact that the study of
quadrilaterals (and their classification) terminates in Grade 10, while deduction as a
process is still focussed upon until Grade 12, although the content matter is then properties

of circles and similarity of triangles.

MALAN'S STUDY

MAIN OBJECTIVE OF RESEARCH

The main objective of Malan's research was to investigate teaching methods for facilitating
childrens’ transition from partition to hierarchical classification. The sample consisted of 14
children chosen at random from schools in the vicinity of the University of Stellenbosch. All the
interviews were conducted in Afrikaans, and a translated version of the questions used and

interview samples are given below.

RESEARCH METHOD

Clinical interviews ranging from 1 hour to 1'/; hours were conducted with individual students. The
interviews consisted of two parts. Section A consisted of a questionnaire and was aimed at
determining the Van Hiele level of the student. In Section B, however, an attempt was made to lead
those who were still partition classifiers to being hierarchical classifiers via the discussion of the
properties of quadrilaterals. The second part was therefore a teaching experiment aimed at
identifying and evaluating possible ways of leading pupils to hierarchical classification of
quadrilaterals. An observer, familiar with the Van Hiele levels, was always present, and at the
conclusion of each session he separately questioned each pupil. The interviews were all audio-taped

and transcribed for later reference and final analysis,



QUESTIONNAIRE

To test for Level 1 Van Hiele thinking (recognition), the children were first given a sheet with
sketches of various quadrilaterals and asked to name them. (The sheet was similar to one used by
Burger and Shaughnessy (1986)). Although most children did well on this activity, there were four
children who identified less than half the figures.

Thereafter they were given Level 2 questions (analysis) which tested their identification of

properties of quadrilaterals. Some examples are given below:

"Circle all the words in brackets which convert the sentences below into true sentences:

i) All the sides of a (square, parallelogram, quadrilateral, trapezium, rhombus, kite,

rectangle) are equal.

ii) If a quadrilateral ABCD is a (square, parallelogram, quadrilateral, trapezium, rhombus,

kite, rectangle), then at least one pair of opposite sides are parallel.

iii) Both pairs of opposite sides of a (kite, quadrilateral, square, trapezium, rhombus,

parallelogram, rectangle) are equal.

iv) The diagonals of a (square, parallelogram, quadrilateral, trapezium, rhombus, kite,

rectangle) are equal.

v) The diagonals of a (kite, rectangle, square, rhombus, parallelogram, quadrilateral,

trapezium) are ;ierpendicular."

In the above question some children needed reminding that more than one answer could be correct,
since some stopped at the first correct answer, moving to the next question. For Level 3 thinking

children were asked to complete questions like the following:

“What type of quadrilateral is ABCD in each of the following cases?

A A
i) AB/DC, AD//BC, A= é\, é\: D, AB=DC, AD=BC, AC and BD) bisect each other

ABCDisa ............

A A AA
ii) AB=CD, AD=BC,AC=BD, A=B=C=D=90°, AB/CD, AD//BC

ABCDisa............



iii) AD/BC, AD=BC
ABCDisa.............
iv) AB=BC=CD=AD
ABCDisa.............
N
v} AB/MC, A=90°

ABCDisa......."

TEACHING EXPERIMENT

This part was extremely complex and varied considerably depending on the individual reaction of
each situdent. However, it is precisely in this adaptability that lies the power of one-to-one
interview-teaching situations such as this, namely: a much more accurate probing of each student's

conceptual understanding than by any other technique.

[Place figure 3 more or less here]

A broad outline of the protocol proéedure which was used in this section, is given in Figure 3. Only
the main part of the procedure will be described here. Firstly it was determined whether the
student was a partition or hierarchical classifier by showing him/her a rectangle drawn on a sheet
and asking if it was a parallelogram. If they said it was not a parallelogram, but a rectangle, they
were asked to explain what a parallelogram was. If they gave a definition of properties which
allowed for hierarchical inclusion, they were asked to check if rectangles also had these properties
and if we could therefore say that rectangles were (special) parallelograms. On the other hand, if
they gave a partition definition which excluded rectangles, either other figures were tried or it was
sometimes tried to emphasize the similarities between them by using a table. Since some students
seemed to give as reason for their exclusion of rectangles, "a mathematical object cannot have two
names", they were shown that, for instance, in biological classifications a biological object may at
the same time be a vertebrate and a mammal or a vertebrate and a reptile: or in mathematics , that
a rectangle is both a rectangle and a quadrilateral. With some students a dynamic approach was
tried by showing, for instance, that a parallelogram (with sides of fixed length) could be
transformed into various shapes of which a rectangle is a special case as shown in Figure 4. This

was unfortunately only done by drawings and not by a physical model.

[Place figure 4 more or less here]
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Is this figure a parallelogram?

P

FIGURE 3.

YES NO
\ Poor .
Why do you say 5 What is a parallelogram? ~
7 ! -
80° reason ! (Frobe until condi~‘:j~§‘
¥ . w.t%ons are sufficient, ‘*“ )
Acceptable Gives def1n1§1on wh%ch Gives partition definit
reason allows for hlerarchlcal_ syexcluding rectangles
inclusion (e.g. both pairs (e.g. no 90° angles)
of opposite sides//)
\ Try other
Repeat procedure figures
¥1§Er2:h%z.g. l D9 you agree that all
rhombus and \ flgures.hav1ng these T?y anglogy Use t
square) properties are parallelo- with accep- to sh
; grams? ted hierar- simil
t chical inclu- ties
: sions.or tween
: Does a rectangle have all DZE:?ic ap figur
‘ A these properties? P
¢
!
b P
| v W ~ A
, NO YES
1
]
\ \'4 v
: Check if rec- Can we therefore zef?r@u%a
: efinitio
X tangle has pro- say that a ree- A
v perties tangle is a '"spe-
End up by cial" parallelo-
drawing tree P gram? (... that
diagram {(or Vemnn | all rectangles
diagram) # are parallelo-
grams?)
E. . /
Parallelogram Makes
YES e_'inc].us.iorl NO
A
Rectangle Rhombus Why do But you said that
you say sol’ all figures having
these properties
are parallelograms?
Square resolve resolve
Acceptable [cocniTIVE CoNFLICT] i
reason

OUTLINE OF PROTOCOL PRCCEDURE OF SECTION B




FIGURE 4.

SOME TRANSFORMATIONS OF A PARALLELOGRAM WITE FIXED SIDES

Complete the following table by marking ¢/ if the guadrilateral

has that property and X if it does not have it.

RECTANGLE

PARALLELO~-

At least one pair
of opposite sides
parallel

Both pairs of oppo-
site sides parallel

Both pairs of oppo-
site sides equal

All four sides
egual

———

Two pairs of
adjacent sides
equal

-4

TABLE 2 COMPARING THE PROPERTIES OF QUADRILATERALS




Students who responded positively to the inclusion of rectangles among the parallelograms were
asked to justify their answer by giving reasons. If the reasons were acceptable, the process was
repeated with other figures, and if time allowed it, they were led to draw tree diagrams (or Venn
diagrams). The following are examples of some of the questions which were asked at this time:
"What types of figures are both kites and parallelograms?”, "Are any kites rectangles? If so,
which?" and to check their thinking: "Are all rectangles squares?" and "If a figure is not a kite, can

it be rhombus?”

Results

Nlustrative responses

From the 14 students interviewed, a sample of 6 has been selected for reporting here. This sampie
was chosen to be fairly representative of the variety of responses the students exhibited. The

students are Lenie, San, Carin, female 8th graders; Rudolf, a male 8th grader; and Dolf and Gawie,

male 9th graders. (These are not their real names.)
Lenie
To the first question in Figure 3 she responded negatively, after which she was asked to complete a

table for all the various properties of quadrilaterals. An example of a subset of this table is shown in
Table 2.

[Place table 2 more or less here)

Contrary to our expectations, this table did not help her to see the similarities between the various
quadrilaterals, and seemed rather to strengthen her partition thinking. At the end she gave the

following definition for a parallelogram:

"A quadrilateral with opposite sides equal and parallel, opposite angles equal, diagonals of

different length halving each other, but not perpendicularly”

Interviewer (I): "Must the diagenals of a parallelogram be of different length?"

Student (S): "If they are equal, then the angles are 90° and then it is a rectangle”.

11



Rudolf

This student also responded negatively to the first question, and was then asked to describe what a
parallelogram was, giving an uneconomical definition (i.e. a lot of redundant properties). A
rectangle was then tested against these conditions and although he agreed that a rectangle had all
the properties of a parallelogam, he resisted any inclusion, saying: "But the diagonals of a rectangle

are also equal”

After testing if the rhombi had all the properties of paralleiograms, he also refused any inclusion,

because (he said):

"if all four sides are of equal length, then it is no longer a parallelogram, but a
rhombus." ' :

After the completion of Table 2 for squares and rhombi the following discussion occurred:

I "Between the properties of these two figures there are many similarities. The differences
that are there, is that the diagonals of a square are equal and that all its angles are 90°,
while that is not the case with the rhombi. Is it sufficient to say that a rhombus is a

quadrilateral with all four sides equal?"
S "No, then it can also be a square.”
i "But it doesn’t have to be a square, it may also be skew figure.”
(Draws quadrilaterals with four equal sides: one with 90° -angles, and the other one not.)

"Is a square then not a type of rhombus; a special kind of rhombus?"

S: "No"

I "Can't one say that a square is é rhombus with 90° degree angles?”
S "No, a square is a square."

E "So, a rhombus must be a skew figure?

S "Yes."

12



San

The first figure in Figure 3 to her was a rectangle, but not a parallelogram. Her definition for a

parallelogram was:

*Two pairs of opposite sides parallel, but not ali equal, because then it is a rhombus”

clearly disallowing the hierarchical inclusien of the rhombi. However, her “"definition” for a
rectangle was: "very similar to a parallelogram, but with the lines not skew” showing some

potential for hierarchical inclusion. The interviewer therefore continued:

I: "Can I therefore say that a rectangle is a parallelogram with angles equal to 90°?"
S "Yes"

1 "But then the above figure is a parallelogram?”

S: "Yes" (confidently)

Although her initial definition for a rhombus excludes squares (no right angles allowed), she
eventually defined a square as a special rhombus with right angles. Comparing the above
definitions for a square and a rectangle respectively, she immediately said that a square could also

be viewed as a special kind of rectangle, with an extra property namely, equal sides.

However, after completing Table 2 she was again confused when asked whether a square was a
rectangle, saying that that doesn't make sense, since "then there would be no difference between
them". After checking that a square has all the properties of a rectangle (but not vice versa), she

agreed that dlthough a square is a rectangle, a rectangle is not a square.

After a comparison of the properties of a parallelogram and rectangle, she made the appropriate
hierarchical inclusion. Asking her to visually compare a rhombus and a kite (without analysing

their respective properties), was now sufficient for her to conclude that a rhombus is a kite.

Carin

Carin immediately accepted the given rectangle as a parallelogram basing her decision on the

economical deﬁ.nitio_n that a parallelogram was a guadrilateral with both pairs of opposite sides

equal. This definition she also applied to include the squares and rhombi. However, she refused to

include the squares with the rectangles, even after comparing their properties. It was only after

repeated comparisons between the parallelogram-rectangle relation (which she accepted
13



hierarchically) and the rectangie-square relation, that she committed herself to accepting a square

as a rectangle.

This was followed by the construction of a tree diagram. The following conversation then took place

with the placement of the rhombi:

I: "Is a rhombus a quadrilateral?”

S "Yes"

I: "Is a rhombus a parallelogram?”

S: "Yes"

I "Is a rhombus a rectangle?"”

S: "No"

I: "Is 2 rhombus a square?"

S: "No"

I. "Is a square a rhombus?"

S: "Yes"

I. "Where must the rhombi therefore be placed in the diagram?"
S "Beneath the parallelograms, but it has nothing to do with the rectangles.”

She eventually also correctly placed the trapeziums and kites in the diagram, and could answer

questions in regard to the intersections of the various types of quadrilaterals.

Dolf

This student also initially refused to make class inclusions as shown in the following conversation

which eccurred after a rectangle had been tested against the properties of a parallelogram:

I "Is any figure with these properties a parallelogram?”

s "I don't think se ... This is rather a difficuit one ... I should say yes."
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"So this figure (pointing to a rectangle) is a parallelogram?"

"No, because we did not say that these two angles must be equal. Something else must be

included to prevent us cailing a rectangle a parallelogram.”

"A little while ago we said that this figure (pointing {o a rectangle) was both a quadrilateral

and a rectangle.”
"Yes, because a rectangle is a quadrilateral with special properties.”
"But can't | then say that a rectangle is a parallelogram with special properties?"

"But why do we have two names if we can say a rectangle is a parallelogram?"

However, after the properties of a parallelogram was again discussed, a sudden resolution oceurred:

"With the rectangle we found all these properties, as well as the property that the angles are
all 99°. Can we therefore say that a rectangle is a parallelogram, a special type of

parallelogram?"

"Yes" (without hesitation}.

The properties of rectangles and squares where then written down and compared.

"Does a square have all the properties of a rectangle?"”
"Yes"

"So it is a rectangle?”

"No, it is a square."

"A special rectangle?"

"Yes, a rectangle with all its sides equal."

"1s a square also a parallelogram?"”

"Yes (surprised) ..., because it has all the properties of a parallelogram.”

He was finally led to draw up a hierarchical schema for the various quadrilaterals studied in the

curriculum.
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Gawie

In Section A of the interview he could only recognize squares, rectangles and kites. The names of
the other quadrilaterals were unknown to him. He also virtually knew none of the properties of the

various quadrilaterals.
A completely different approach was then foliowed with Gawie.

The following concepts were first clarified: the size of an angle, the iength of a side, parallelness,
and the meaning of the words "at least". Certain conditions were then placed on the concept
quadrilateral by selecting certain properties. Gawie was then shown a number of sketches of
quadrilaterals;, and he had to decide which complied with the chosen conditions. Afterwards the
name of the set of quadrilaterals complying with the restriction was given. An example is given in

Figure 5.
[Place figure 5 more or less here]

He was also asked to identify those quadrilaterals with both pairs of opposite sides parallel and
those with both pairs of opposite sides equal and all four sides equal. Gawie was then asked to

explain what a rectangle was. He did this as follows:

"A quadrilateral with both pairs of opposite sides equal and ail the angles equal to
900‘!!

After this he immediately classified a square as a rectangle, as well as seeing a rectangle as a

parallelogram (one of those in the set of quadrilaterals previcusly called parallelograms).

Summary of results

Table 3 gives a summary of the results of all the interviews as well as how the students fared on the
questions testing the Van Hiele levels in Section A, The symbols, p, pH and H used in the table,
respectively represent partition, partially hierarchical and fully hierarchical thinking. With a
criterion of 70% for determining proficiency for the Van Hiele levels, all fourteen cases confirm the

hierarchical nature of the Van Hiele levels.

[Place table 3 more or less here]
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Findings and Conclusions

The following are some of the findings and conclusions of Malan's study:

i)

i)

iii)

iv)

v)

Language plays an extremely important part in a child's understanding, ability and
acceptance of ¢class inclusions. It appeared from the interviews that chiidrens' difficulty with
the hierarchical elassification of quadrilaterals often lay with the meaning of the word "is"
in the question "Is a square a rectangle?” They seemed to interpret it as meaning
"equivalent to" or "is the same as”, which of course is not what we mean by it, namely, "is a
subset of" (San: "then there would be no difference between them"). This different view on
the meaning of the word "is" as we use it, was possibly also manifested in their objection to
using "two different names” for the same object. (Dolf: "... why do we have two names if we
cati say d réctangle is a parallelogram?”) It seéemed that the use of the word "special" for
indicating class inclusions in many cases, helped students to see that we were not asking if

they were equivalent, but if the one was a subset of the other (see Dolf).

The use of analogy in referring to other situations where an object may have two different
names, or in other words, where it may he viewed as a special subset of a larger set,
sometimes seemed useful. Also when a student had already made a hierarchical inclusion of
some quadrilaterals, it provided the opportunity te convince him/her of the functionality of

repeating it with other sets of quadrilaterals (see Carin).

Tables of properties comparing guadrilaterals may be useful, but at times may reinforce
partition thinking (Lenie). It seemed as if working from their own definitions for a specific
gquadrilateral, sometimes provided a useful starting point for convincing them of class
inclusions (San, Carin). To achieve this, it was necessary to start with the more general

inclusive concept, using a table only when their definition was incomplete (e.g. insufficient).

Deductive thinking was already in evidence among‘children at levels lower than Level 3.
For instance, Lenie provides a good example when she uses deduction to justify her
exclusion of rectangles from the parallelograms. This is in support of Njisane'’s earlier
reported findings, and partially justifies our theoretical misgivings with an oversimplified

view of deduction and its role in mathematies.

The theoretical claim that (informai) deductive thinking develops hand in hand with
hierarchical class inclusion seems doubtfu.l. Whereas Lenie uses deduction to justify her
partition thinking, others like Carin and San could reason logically from their own or given
definitions to make class inclusions. Although conditional (deductive) reasoning with class
inclusions {all p are q) and causal relationships (p implies q) are logical-ly equivalent (e.g.
(AcB; BeC; ASC) <=> (p=>q;g=>r; p => r)), it does not necessarily mean that
they are experienced as psychologically the same by children. A study by O'Brien (1973)
17



vi)

vii)

viii)

ix)

has, for instance, demonstrated that causal arguments (in non-mathematical situations) are

consistently easier than class inclusions.

Bearing in mind that hierarchical thinking is only supposed to emerge on Level 3 according
to (some interpretations of) the Van Hiele theory, it is surprising, and in fact contradictory,
that so many students at lower levels could be led to hierarchical classification. The same
can be said of Van Hiele's assertion in Begrip en Inzicht that it first occurs on Level 2. Lenie

and Rudolf at Level 2, however, complicate matters by refusing to make any inclusions.

Furthermore, from the data it seems that hierarchical thinking is far more dependent on the
teaching strategy used, than on the Van Hiele level as measured by the test-items in Section
A (recall that the test items did not directly test hierarchical classification). This
independence was pé.rticu]ar]y highlighted by the success of the teaching strategy used for

Gawie, where the learning events were structured in such a manner that hierarchical

relationships between the figures were immediately put in the foreground.

We believe that there is great danger in the Van Hiele based argument that pupils should
first learn the properties of quadrilaterais before any attention is given to the making of
hierarchical inclusions. If the learning of the properties of each quadrilateral is done in
isolation of each other, and they are not continually eompared, children's tendency to
partition may fossilise and they may use precisely those learnt properties to justify their
partitioning (e.g. Lenie and Rudolf). A partition classification schema once firmly
entrenched therefore seems very resistant to change. In contrast, those who did not possess
such firmly entrenched prior ideas (generally those at lower Van Hiele levels) could more
easily be led to class inclusions via appropriate teaching strategies (San, Carin, Gawie,

Dolf).

Given the contradictory nature of the evidence of Malan's study, as well as in relation to
Njisane's study, we have hypothesized that the hierarchical class inclusion of mathematical
objects may develop independently from the development of deductive thinking. In our view
they neither necessarily develop simultanecusly, nor does the one need to be considered a

prerequisite for the other.

An alternative teaching strategy

Description

Another aspect of Malan's study was the testing of ah alternative teaching strategy (similar to the

one used for Gawie) with a group of five Grade 6 students. They were chosen since they had not yet

been "contaminated"” by the traditional approach. Although they knew the names for a square and a
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rectangle, they did not know any of their properties nor had they seen or heard the names of the

other quadrilaterals.

The students were first told that a quadrilateral was any closed figure with four sides and that one
could obtain/eonstruct special quadrilaterals if one placed restrictions on certain properties. Then
unfamiliar properties which quadrilaterals could possess like parallel sides, perpendicular
diagonals, opposite sides, opposite angles, ete. were clarified without referring te specific
quadrilaterals. They were then invited to select any such properties they could think of. The first
one they chose was that both pairs of opposite sides must be equal. They were then teld to construct
{draw) all the quadrilaterals which complied with that description. Initially they firsi drew justa
square and a rectangle, but the researcher then drew a (skew) rhombus on the blackboard, asking
them if that complied with the description. They then scon discovered a (skew) parallelogram by

themselves.

The same procedure was then repeated for other properties (e.g. diagenals are equal, all the sides
are equal, opposite angles equal, and sides parallel, etc.). The various descriptions and their
corresponding visual prototypes were then summarised on the blackhoard and the students were

then asked questions like the fellowing:

a) Are all the figures with preperty A present in the figures with property B?
b) Are all the figures with property B present in the figures with property A?

¢) Are there cases where different properties have the same set of figures?

From all five students' positive responses to these questions (which were afterwards verified
individually), it was clear that this strategy promoted both hierarchical classification, as well as

tolerance for alternative, but logically equivalent definitions (e.g. question (¢) above),

This alternative approach is clearly radically opposed to the traditional approach where children
first learn to associate the names of figures with given visual prototypes. The defining quality
associated with the name is theréforeydet;:rm.ined by the visual perception of the figure. Since a
square "looks" different from a rectangle, the traditional approach forces children into partition
classification right from the start. We believe that the observation that children think of shapes as
a whole without explicit reference to their components, is the direct result of eur actually teaching
éhildren from the start to think of shapes as a whole and in terms of visual prototypes, and with no
reference to their components. However, in the alternative appreach whole sets of figures are
associated with specific defining properties. For example, since squares, rhombi and kites are

grouped together under one or more defining properties, hierarchical classification is clearly
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promoted. A comparison between the {raditional and this alternative approach is given in Table 4.
Summarised: in the traditional approeach, properties are introduced via certain geometric figures,
while in this alternative approach geometric figures are introduced via their defining properties.
Interestingly, this approach may not be as unnatural to children as it looks at first sight, since Senk
(1983: 163) found that the largest number of misfits of the Van Hiele mode!l, were those that had

mastered Level 2 without mastering Level 1.
[Place table 4 more or less here]

We have also hypothesized that students in such an alternative approach will probably progress
through levels quite different from the normal Van Hiele levels: the latter having being
theoretically developed from the traditional approach. What the precise characteristics of these
- levels will be, is a-matter for urgent future research.-In the final analysis, it therefore seems from -
our investigation that the Van Hiele thecry and its levels are not immutable and totaliy
independent of the teaching strategies used. Mayberry (1981: 8) seems to have been justified when
suggesting: "It is conceivable that the observed levels are an artifact of the curriculum or of the

instruetion given the students ..."

Perhaps the Van Hiele levels should not so much be viewed as prescriptive in regard to a learning
and teaching hierarchy, but merely as descriptive of the results and outcomes of our present
teaching strategies and curricula. It is therefore possibly only "prescriptive” in so far as the

traditional approsach is used.

Some mathematical and educational perspectives

Some mathematics educators may, however, object to the alternative appreach, arguing that it pre-
empts the definition of geometric figures, thereby robbing students of the opportunity to construct
them for themselves. [t also circumvents the transition from partition to hierarchical classification,
Certainly from a mathematical point of view,it is true that mathematicians often need to define
objects "a posteriori”, as well as to make a hierarchical transition in their conceptual view of ohijects
on the grounds of economy (especially economy of definition), These activities of defining and
classifying are furthermore pedagogically important, because they lead to the construction of
powerful alternative conceptual schemas, a process comparable to any major scientific
breakthrough. To deny students these opporﬁunities, is to deny them important educational

experiences.

On the other hand, there are several other areas like the set of real numbers and its subsets which

could provide an easier transition from partition to hierarchical classification. Furthermore,

mathematicians sometimes define mathematical objects "a priori" by the variation of the preperties
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TRADITIONAL APPROACH

1. Children become visually
familiar with the various
geometric figures and
their names, e.g.: gua~-
drilaterals, like sguares,
rectangles, parallelo-
grams, etc.

2. Children now analyse these

visually familiar figures
sgparately to discover

their properties.

TaLE 4.

ALTERNATIVE APPROACH

2.

A COMPARISCON OF TEACHING APPROACHES

Children are visually familia-
rised with the properties of
geometric figures, e.g.: para:
sides, egual angles, bisectin:
diagenals, etc.

Now variations of these proper
are analised. Children select
certain properties to act as
constraints, and then try and
construct all those tric

figures which comply with thos
conditions.



of known objects, and are then faced with the task of constructing examples complying with those
conditions. For example, defining a "skew kite" by the variation of the normal definition of a kite to
"a quadrilateral with at least one pair of adjacent sides equal” (De Villers, 1988a: 33). In addition,
the alternative approach has the positive aspect that children will accept class inelusinns

painlessly, thereby allowing more time for developing the notion of preof and deduction.

Another valid point of objection to the alternative approach is that children will not be coming into
the classroom completely untainted, since the social environment would already in many pre-schosl
children have them associate, for instance, a rectangle with a spacific visual prototype (nast all sides
equal). They would therefore already be conditioned into the partitioning of figures beforehand, and
would resist such an alternative approach. However, this would hardly be the case for most other
quadrilaterals like rhombi, parallelograms and trapezia. And since using the alternative approach
would enable children to at least easily make some class inclusions, one may use analogy from

there to convince and enable tham to see a square as a rectangle {(see Carin).

SOME DRAWBACKS OF THESE STUDIES

First of all, in Malan's study it is possible, but probably unaveidable, that the Hawthorne effect
played a significant role. Also it was impossible to assess any changes that had occurred to their
Van Hiele level thinking as measured by the questionnaire because of and during the interview-
teaching experiment. Furthermore, since there was no follow-up interview at a later stage, we do
not know whether the transition to hierarchical classification had been permanent. The results are
also difficult to generalize to normal classrooms, since the situation was either an ideal one-toone

teaching environment or a small group.

An obvious point of valid criticism against both studies could be that the results are unigue to our
South African situation, our teaching metﬁods and curriculum, and not suitable for generalization
to other countries. However, a close analysis in Usiskin (1982) of American students' fall
performances on items 13 and 14 (testing hierarchical inclusion), at 26% and 13% respectively,
compare unfavourably with the other three items (measmiring informal deduction) at 48%, 43% and
30%. This clearly supports Njisane's findiing that hierarchical classification (of quadrilaterals)
seems psychologically more difficuit to children than deduction in general. In another local study
presently underway, Smith (1987} has found similar results using a slightly adapted (and
translated) version of the CDASSG-test in Usiskin (1982).

That children at lower Van Hiele levels may achieve success in proofwriting, has also been
confirmed by Senk (1983: 179) when she found that 23% of the Level 2 students could write at least
3 of 4 valid proofs. Shaughnessy & Burger (1985: 423) have also reported that "class inclusions were
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seldom recognized without a lot of probing ..." and that "... most students balked at the suggestion

that thege figures had more than one name ..."

SOME GENERAL COMMENTS ABOUT TESTING HIERARCHICAL
CLASSIFICATION

Although children at an early age are capable of understanding class inclusions like "cats and dogs
are animals”, it is certainly psychologically much maore difficult with geometric figures, since the
defining attributes are usually more subtle and compiex. Class inclusions among different classes
of geometric figures are also not necessarily of the same psychological difficulty, although the
logical structure may be the same. For instance, in Mayberry (1981) only 3 out of 19 students
indicated the squares also as rectangles on a sheet of some given quadrilaterals, while 12 out of 19
~ indicated an equilateral triangle alse as an isosceles triangle in a comparable tagk. Psychologically,
it is easy to explain this discrepancy since the visual prototypes used for equilateral triangles are
easily visually recognizable as isosceles by, for instance, mentally folding the eq;xilateral triangle
along any line of symmetry. In contrast, it is not quite so easy visually recognizing a square as a
rectangle. In addition, it must be remembered that equilateral and isosceles triangles are usually
introduced with verbal definitions, while that is usually not the case with a square and a rectangle.
(Actually Mayberry (1981) has already confirmed that students do not necessarily simultaneously
progress to the same level of Van Hiele thinking (in general) by doing a consensus analysis of

different conceptual strands.)

An analysis of student responses to questions measuring hierarchical- classification in Njisane
(1986) by means of visua!l identification (given a sheet of quadrilaterals) or by means of a verbal
description (all rectangles are parallelograms), indicates that students consistently perform lower
on visual identification tasks than on verbal ones. This can once again be explained by the
misleading nature of visual identification tasks, where the student may only mark the most general
example of that quadrilateral, not knowing that the intention of the question was that he should
also mark the special cases. Even mathematics teachers who know the quadrilateral inclusions, are
easily trapped by such a task, unless they are for instance, asked if any of the other figures can also
be marked as special cases of that quadrilateral. The possibility also exists that the level of
difficulty of class inclusion varies quite significantly even among the quadrilaterals. For example,
some students (see San) sometimes easily recognize a rhombus as a kite by (presumably) mentally
rotating it into the standard representation of a kite (perhaps they recognize the perpendicularity of
the diagonals and (mistakenly) use it as a sufficient condition). In contrast, it seems that the

inclusion of squares among the rectangles, is frequently the most difficult (see Carin).
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THE ROLE OF HIERARCHICAL CLASSIFICATION IN MATHEMATICS

The main reasons why mathematicians usually prefer hierarchical classifications to partitioning,

are:

i) it leads to an economy of definition (e.g. compare "a parallelogram is a quadrilateral with
two pairs of opposite sides equal” to "a parallelogram is a quadrilateral with unéqual
diagonals, two pairs of opposite sides equal, but not all sides equal™)

ii) it simplifies the deductive structure of a set of concepts (e.g. defining a rectangle as a special

kind of parallelogram implies that all the parallelogram theorems are immediately

applicable to rectangles, without having to prove them anew)

iii) it is sometimes a uséfﬁ]ucbﬁceptual schema when prdvi'ng certain riders (e.g. p.mv.'ing.that a
kite with one pair of opposite sides parallel, is a rhombus by using the fact that a rhombus is

e
both a kite and a parallelogram, and then merely proving that both pairs of opposite sides

are parallel).

" TEACHING THE HIERARCHICAL INCLUSIONS OF QUADRILATERALS IN

THE TRADITIONAL APPROACH

We believe that children's difficulty with hierarchical class inclusion may not lie so much with the
inclusion as such, but with the meaning of the activity: both linguistic and functional: linguistic in
the sense of correctly interpreting the language used for class inclusions, and functional in the
sense of understanding why it is useful. We have observed several children who have no difficulty
in accepting that defining a trapezium as "a quadrilateral with at least one pair of opposite sides
equal”, implies that a parallelogram is also a frapezium, but that they cannot see the need for such

a definition.

For hierarchical classification in the traditional approach to be really imeaningful to students, it is
therefore essential that not only a negotiation of linguistic meaning should take place, but also one
of functional meaning: that is a discussion and exemplification of the reasons for hierarchical
classification as described in the previous section. It is however not an all or nothing situation, but
lies on a continuum. from functional clarification on the one hand to no clarification on the other
hand. However, while functional clarification and its negotiation requires as negative trade-off a
lot of time and patience, the imposition of hierarchical definitions with ne clarification, leads to a
certain amount of didactical economy as shown in Figure 6. Therefore, even though "complete"
functional understanding is conceptually desirable, a midway strategy might be preferable.
Nonetheless, whether the teacher chooses to spend a lot of time on functional clarification of

eontent and processes he {(or she) should at least have a clear idea himself (herself) of the various
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functions of mathematical content and processes (e.g. What is it good for? Why is it necessary?

What is its role? What are the reasons behind it? Does it have any applications?, etc.)

[Place figure 6 more or less here}

On the other hand, hierarchical classification of quadrilaterals is not all that important: one can get
along quite well without it (exeept that one's definitions are then uneconomical). This raises the
question: why not allow children to proceed with their partition definitions (provided they're
consistent in their partitioning)? Surely it is more desirable than imposing hierarchical definitions
on them which they do not understand. In fact, in the latter part of 19886, the author participated in
a successful teaching experiment with a Grade 9 class where the possibility of hierarchical
inclusion and hierarchical definitions as an alternative way of looking at the quadrilaterals was
-discussed, but the children were free to choose whichever view they preferred. The arbitrariness in
choice of definition was thus emphasized in a broader context than usual. Although quite a number
of children gradually saw the convenience of hierarchical inclusion and made the transition, a
significant number of children (some of the most intelligent) preferred not to do so. Of course, this

meant that none could be penalised in tests and exams if they used partitioning instead of class

inclusion.

FINAL REMARKS

As pointed out in this paper, two aspects of the Van Hiele theory need clarification and further
research, namely a refinement with regard to the levels at which deduction (as justification,
explanation and systematization) is supposed to occur, as well as the relationship between
hierarchical thinking and deduction. Furthermore, it is necessary to characterize children's

development in the alternative approach as described earlier.
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