
Euclid’s Ever-turning Windmill

XYZ

It will serve us in good stead with that awkward youth who is always sulkily

asking us the wherefore of all these triangles, parallelograms and circles. It is

no use to tell him that they are the whetstones for his wits. He is not aware

that his wits need sharpening, nor would he greatly relish the prospect if he

were. Indeed, he regards his discovery of the uselessness of Euclid as a proof

of his already superior sharpness. So we may lawfully use lower motives with

him. We may tell him that there is a Science of Trigonometry which is merely

the Algebraical statement and expansion of Euclid i, 47. That it is this science

which enables ships to sail in straight course, or St. Gothard Tunnels to be

pierced so exactly, that engineers from Switzerland and engineers from Italy

meet, within an inch or two, in the centre of the mountain after five miles of

independent burrowing from opposite sides, and we can thus experto crede,

inspire the dullest with a kind of interest in his work.

W. P. Workman, 1897 [19, p. 195]

1 Locating an unallocated lemma

Euclid (c. 325–c. 265) presents a first proof of the Pythagorean Proposition, that the
square on the hypotenuse of a right triangle is equal (in area) to (the sum of) the
squares on the legs, towards the end of Book I of his Elements , in Proposition I.47

(interpolating our understanding of area and sum in Euclid’s succinct formulation).
Over the centuries, this proof has drawn both bouquets and brickbats, while the
diagram that traditionally accompanies this proof, pored over intently by generations
of students, has acquired a corresponding variety of nicknames (see the discussion in
[6, Vol. 1, pp. 415, 417–418]). Of these sobriquets, that of the Windmill [7, Vol. 1,
p. 378] does at least have the merit of reminding us of the crucial role of rotation in
Euclid’s manipulation of areas, that, with reference to Figure 1, the pairs of triangles
△ABD with △KBC and △BAF with △JAC in play in the proof are, not just
congruent, but can be obtained one from the other by quarter turns.

But Euclid’s Windmill also seems to turn over in the minds of those who study it,
revealing further properties and generalisations. This propensity must have set in
fairly early, to mixed response, since already Proclus Diadochus (411–485) remarks
on it somewhat adversely in his commentary on the Elements (as quoted in [6, Vol. 1,
p. 366])
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Figure 1: Euclid’s Windmill

The demonstration [of I.47] by the writer of the Elements being clear, I con-

sider that it is unnecessary to add anything further, and that we may be sat-

isfied with what has been written, since in fact those who have added anything

more, like Pappus and Heron, were obliged to draw upon what is proved in the

sixth Book, for no really useful object.

It is worth perhaps keeping this longer historical perspective in mind, because it
seems sometimes suggested that closer investigation of Euclid’s Windmill only got
under way with a letter [15] from Vecten on 30 June, 1817 to Joseph Diaz Gergonne
(1771–1859), the Editor of Annales de Mathématiques pures and appliquées, famil-
iarly known as Gergonne’s Annales. Writers of this later epoch were certainly not
inhibited by Proclus’ strictures on proof technique or utility, if indeed they knew
about them.

Now, whether or not the observation is of any moment, it can hardly escape notice

in Figure 1 that the lines AD and BF intersect on the line through C perpendicular

to the hypotenuse AC, all the more in that this is the demarcation line between the

two rectangles into which the square on the hypotenuse is divided in the course of the

proof presented by Euclid (for a general reference for triangle centres, see [9]; see [17,

p. 80] for a recent anthology of coincidences). Perhaps piquing curiosity serves its

own purpose, given the lively and protracted comment this coincidence has excited.

In contrast, much less attention has been given to the final, stray lemma offered by

Pappus (c. 290–c. 350) at the end of the guided tour of the works comprising the

“Treasury of Analysis” he provides in Book VII of the Mathematical Collections , to

the extent that it remains unsourced and seemingly otherwise unrecognised (see [7,
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Figure 2: On location

Vol. 2, pp. 426–427]).

Lemma (Pappus) Let △ABC be a right triangle with right angle at C and let AC

and BC be divided at R′ and S ′ respectively such that

BS ′ : S ′C = BC : AC = CR′ : R′A. (1)

If AS ′ and BR′ intersect at T ′, then CT ′ is perpendicular to AB.

Clearly, the language in which this Lemma is couched has moved on from Elements

I . However, with Figure 1 in view, there is the suspicion that the result is not
unfamiliar. Indeed, as we confirm in Section 5, the Lemma is an intrinsic restatement
of the coincidence of AD, BF and CP shorn of the squares on the sides of the right
triangle △ABC. So, quite possibly it preserves something of the material Proclus
was inclined to reject. But we rescue the Lemma from comparative neglect in which
it has languished, because, in coming to view the coincidence differently, we find an
invitation to see further, as suggested in Figure 2.

In order to summarise these further findings, let AGBC be a rectangle (as in Figure
2(i)), with P the foot of the perpendicular from C onto AB; Q the intersection of
the angle bisector of 6 ACB with AB; R and S the points of intersection of Euclid’s
lines BF and AD with AC and BC (as in Figure 1); and T the point of intersection
of AS and BR. To identify two further points in Figure 1, let AD intersect CJ in
U ; and let BF intersect CK in V . Finally. let A1 and B1 be the centres of the
squares placed externally on BC and AC (see Figure 2(ii)).

Theorem 1 (i): T lies on CP and GQ produced;

(ii): CRQS is a square inscribed in △ABC;

(iii): P lies on the circumcircle of this inscribed square; and

(iv): U is on QR; V is on QS; UV is parallel to AB; and tirangles △V UQ and

△ABC are similar.

Theorem 2 (i): A1SP and B1RP are straight lines bisecting the angles 6 APC and
6 BPC respectively; and

(ii): the triangles △B1A1P and △RSP are similar to △ABC, with CP the angle

bisector of 6 A1PB1.
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Some modern Proclus might contend that these Theorems do not serve any “really
useful object” when weighed in the balance against the Pythagorean Proposition.
Naturally, few results would count by that measure. Rather, our interest lies in
fostering the habits of noticing and proving, without which appreciation of the
great theorems of mathematics would become yet more difficult. In this regard, it is
always curious what is recorded and what seems to be overlooked. For example, the
equality of the intercepts CR and CS in Figure 1 is sometimes noticed along with the
coincidence of the lines AD, BF and CP at T (see, for example, [1, Prop. 23, pp. 16–
17]). However, when it comes to discussion of inscribed squares, the connection with
Figure 1 goes unmentioned (compare [1, 8, 18]).

As it happens, not only was this coincidence of lines in Euclid’s Windmill known to
Heron (c. 10–c. 75), but also, in a remarkable survival, a proof has come down to
us from Heron’s commentaries framed in terms of Elements 1, suggesting that early
writers were not so indifferent to proof techniques as Proclus asserts, and answering
into the bargain a question [5] raised anew in 1823 by J. Hamett in Philosophical

Magazine. For, Heron calls on Elements I.43 , that in any parallelogram, the com-
plements of parallelograms about a common diagonal are equal in area — in effect,
working this proposition backwards and forwards avoids the need to appeal the pro-
portionality of similar triangles. This primitive approach makes a good starting
point as we build towards a proof of our Theorems. So, in Section 2, we explore
what information can be gleaned this way, before probing further in Sections 3–6 by
means of similar triangles and cyclic quadrilaterals, returning in Section 7, our final
section, to provide an historical retrospective.

2 Exercises on Elements I.43 and its converse

At first glance, Elements I.43 might seem unprepossessing, even inconsequential: the
statement is opaque; the substance elementary. In Figure 3(i), ABDC, AGXE and
DIXF are the parallelograms about a common diagonal while CEXI and BFXG
are the two complements in question. The common diagonal splits the parallelo-
grams into three pairs of congruent triangles, △ABD with △DCA, △AGX with
△XEA and △XFD with △DIX. Hence, the complements BFXG and CEXI are
equal in area since they can be obtained by starting from congruent triangles and
excising congruent triangles:

BFXG = △ABD −△AGX −△XFD.

and
CEXI = △DCA −△XEA −△DIX.

Euclid does not prove a converse to I.43 . But it is straightforward to reverse the
foregoing argument to conclude that, if ABDC is a parallelogram divided by lines
EF and GI parallel to AB and AC respectively so that BFXG and CEXI are
equal in area, then X is on the diagonal AD (refer again to Figure 3(i)). For, under
these hypotheses, the regions

AGBFDX = △AGX + △XFD + BFXG
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Figure 3: Elements I.43
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Figure 4: Exercise on I.43 — CR = CS

and
DICEAX = △XEA + △DIX + CEXI

partition the parallelogram ABDC and are equal in area. Consequently these re-
gions must both occupy half the area of the parallelogram. But this is also the
case for the triangles △ABD and △DCA. So, △AXD is a triangle with no area,
implying that X is on AD.

As a first application of I.43 , consider a rectangle with sides a and b as in Figure 3(ii)
where a square of side w has been inscribed between a corner and a diagonal. By
I.43 , the shaded rectangle in Figure 3(ii) inscribed between the opposite corner and
the diagonal has the same area as the inscribed square. So, replacing this shaded
rectangle by a second copy of the inscribed square, we may reorganise the original
rectangle into one of the same area having sides w and a + b, showing that

w(a + b) = ab (2)

But, even without recourse to this reorganisation of areas, (2) is implied algebraically
by the balance between the shaded regions in Figure 3(ii):

w2 = (a − w)(b − w).

Either way, in a right triangle with legs a and b, a square inscribed so as to have
sides on those legs has side w = ab/(a + b) (compare [18]).
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Figure 5: Exercise on I.43 — a coincidence

Now, let us turn to the observation that, in Figure 1, CR = CS. In Figure 4(i), the
shaded rectangle is cut out of the rectangle AGDE by the line through S parallel
to AE, so that S is the intersection of this line with the diagonal AD. So, by I.43 ,
the shaded region in Figure 4(i) outside the rectangle AGBC is equal in area to the
unshaded portion of this rectangle, which is to say that the shaded areas in Figures
4(i) and (ii) are equal. Similarly, applying I.43 to the rectangle BHFG shows that
the shaded areas in Figures 4(ii) and (iii) are also equal. Hence, in the notation of
Figure 4,

sa(a + b) = ab = sb(a + b), (3)

and so CR = sb = sa = CS. Moreover, comparison of (2) and (3) reveals that C, R
and S are vertices of a square inscribed in △ABC with the lines through R and S
parallel to BC and AC meeting on the hypotenuse AB at the fourth vertex of the
square, namely Q.

But we can also establish this coincidence at Q by way of illustrating the use of the
converse of Elements I.43 . For, the shaded area in Figure 4(i) outside the rectangle
AGBC is equal in area to the shaded area inside this rectangle when it comes to
Figure 4(iii). So, from our previous argument, the unshaded area inside the rectangle
AGBC in Figure 4(i) and the shaded area inside it in Figure 4(iii) are equal. Deleting
the region common to both areas, we have balancing rectangles set into opposite
corners, C and G, of the rectangle AGBC cut off by the lines through R and S
parallel to BC and AC respectively (compare the move from Figures 6(i) and (ii) to
Figure 6(iii)). Thus, by the converse to I.43 , these lines meet on the diagonal AB
of the rectangle AGBC. Since we also know that the balancing rectangle set into
the corner C is in fact a square, this point of intersection is Q.

These preliminary skirmishes with Elements I.43 and its converse help prepare us
for Heron’s demonstration that the lines AD, BF and CP in Euclid’s Windmill are
coincident. Heron supposes that AD and CP meet at, say, T ′ and aims to show
that T ′ is also on BF . First of all, he checks that, if DE and HF meet at N ,
as in Figure 5, then PC produced passes through N . This allows him to use I.43

to infer that complements about T ′CN shown shaded in Figure 5(i) are equal in
area. Next attention shifts to the rectangle AGDE, where another instance of I.43

shows that the complements about AT ′D shown shaded in Figure 5(ii) also have
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Figure 6: Exercise on I.43 — another coincidence

equal area. Combining this information, Heron finds balancing rectangles set into
opposite corners, G and H , of the rectangle BHFG and having vertex T ′ in common.
Hence, by the converse to I.43 , T ′ lies on the diagonal BF of the containing rectangle
BHFG, confirming the coincidence observed in Figure 1 at T .

In working through the demonstrations illustrated in Figures 4 and 5, it is natural
to wonder how the points of coincidence Q and T that play pivotal rôles in them
might be related? Here we can learn from Heron’s example. By applying Elements

I.43 to rectangles with BR and AS as diagonals, the complements shown shaded
in Figure 6(i) and (ii) are equal in area. Combining this information, the shaded
rectangles in Figure 6(iii) with common vertex at Q also have equal area. So, the
converse of I.43 implies that G, Q and T are collinear.

3 More than a coincidence

Euclid does envisage squares on the sides of general triangles, not just right triangles.
He gives a version of the Law of Cosines , generalising the Pythagorean Proposition,
in two propositions late in Elements II — II.12 for obtuse angles and II.13 for acute
angles, with Data 63 providing a complement to them. For that matter, Elements

III.36 gives yet another generalisation of I.47 , in effect anticipating one ascribed
to Thabit ibn Qurra al-Harrani (836–901), although by that stage of the Elements

Euclid ’s focus is on the geometry of the circle, leaving the explicit manipulation of
areas behind.

Interestingly enough, the proof of I.47 captured in Euclid’s Windmill carries over to
II.12, 13 , but that is not how Euclid proved them, nor has this line of argument been
detected prior to 1647 (see [6, Vol. 1, p. 404]). Indeed, infrequent adoption since
then lends this style of proof almost an air of novelty when it does appear. Vecten’s
letter [15] in 1817 was a departure from this apparent incuriosity in scrutinising
the configuration of squares placed externally on the sides of a general triangle,
prompted by a search for a proof of the continued coincidence of lines observed in
Euclid’s Windmill.

But this general concurrency is not difficult to prove. A proof by similar triangles
is suggested in Figure 7(i) by framing each of the squares on the sides AC and BC
with its own set of four congruent right triangles. If, AD meets CP in T ′, then the
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Figure 7: A general coincidence

triangles △APaD and △APT ′ are similar. So,

PT ′ : AP = PaD : APa,

or, in the notation of Figure 7(i), with ga = PT ′ the intercept of AD on PC:

ga

x
=

y

h + x + y
.

Hence,

ga =
xy

h + x + y
. (4)

Since the right-hand side of (4) is symmetric in x and y, the intercept gb of BF on
CP will be given by the same expression, that is, gb = ga and the lines AD, BF and
CP are coincident.

However a demonstration more in the spirit of Euclid’s Windmill, and in essence
drawing only on Elements I , can be given as follows (the case of a right triangle was
already treated in much this way in [4, (b)]; compare also [16]). Consider Figure 1
again, but now without the assumption that △ABC is a right triangle. We rotate
the triangles △ACJ and △BCK a half-turn about the mid-points of AC and BC
respectively to create the triangle △ABN shown in Figure 7(ii). Clearly △ABN
is congruent to △JKC, indeed a translation of it in the direction PC. Notice
also that △CNH and △NCE are both congruent to △ABC, so that CENH is
a parallelogram and we recover the upper left-hand portions in Figure 4 and 5 on
reverting to the case where △ABC has a right angle at C. Thus, NA and NB are
parallel to CJ and CK, which are related to BF and AD respectively by quarter
turns, as already noted in our introduction to the Windmill, while NCP is a straight
line — a point Heron also had to check in the more restricted circumstances of Figure
5, as noted in Section 2.

We now see AD, BF and CP afresh as the altitudes of △ABN , so their concurrency
follows from the general concurrency of the altitudes of a triangle. This latter
concurrency is often proved by means of the circle geometry of Elements III . But this
can be avoided by deducing the result from prior knowledge that the perpendicular
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bisectors of the sides of a triangle are coincident at the circumcentre of the triangle
(compare [17, pp. 128–129]). It is true that Euclid relegates the construction of the
circumcircle of a triangle to Elements IV, in IV5 , along with other constructions for
a range of circumscribed and inscribed figures. But Euclid’s proof of IV.5 appeals
directly to Elements I , making for a simpler demonstration of the concurrency of
the altitudes than proceeding via circle geometry.

Looking back to Figure 1, but still without restriction on △ABC, we can now turn
the argument around to extract further information. To this end, recall that AD
and CJ intersect in U and that BF and CK intersect in V (see Figure 1). Then
AD and BF are altitudes of the new triangle △UV C and intersect at T . Since T
is on CP , it follows that CP is the third altitude of △UV C and hence that UV is
parallel to AB. Of course, it is possible to give a direct proof that UV and AB are
parallel, for example by similar triangles, and so to deduce that AD, BF and CP
are coincident from the concurrency of the altitudes of △UV C. For the record, the
perpendicular distance alike of U or V from AB is, in the notation of Figure 7(i)

xy(x + y)

(h + x + y)2 − xy
,

which reduces to h2/(2h + x + y) when △ABC has a right angle at C since then
h2 = xy.

The three line segments of this kind, produced as necessary, will intersect to give a
triangle similar to △ABC. In the case where △ABC has a right angle at C, the
other two segments besides UV are, in fact, the intercepts CR and CS, making
it easy to identify the triangle they define. An an agreeable bonus, U and V are
then on the sides QR and QS of the inscribed square CRQS identified in Section
2. This follows on showing, either as another exercise on the lines of Secetion 2 or
by further arguments using similar triangles, that the perpendicular distances of U
from BC and V from AC is the same as the side s of the square CRQS inscribded
in △ABC (compare (2)). Since we now have both that UV is parallel to AB and
that 6 UQV = 6 RQS = π/2, triangles △V UQ and △ABC are similar.

4 The inscribed square

We have seen in Section 2 that Elements I.43 and its converse are sufficient to
identify CRQS as a square inscribed in the right triangle △ABC. Alternatively,
without imposing the limitations of Elements I , we can rework the proof that the
intercepts CR and CS in Figure 1 are equal in terms of similar triangles. In Figure
4(i), the triangles △ADE and △ACS are similar, so that, in the notation there,

sa

b
=

a

a + b
,

or

sa =
ab

a + b
. (5)

9



AB B'

C

D

E

R

S

Q

D'

E'

C'

U

(i)

A

A'

B

B'

C

K

K'

J

J'

(ii)

AB

C

R

S

Q

UV

(iii)

Figure 8: In perspective

As observed with (4), the right-hand side of (5) is symmetric in a and b, indicating
that, when we come to consider the similar triangles, △BFH and △BRC, sb will
be given by the same expression. Consequently CS = sa = sb = CR.

The extension of this argument by similar triangles to a general triangle △ABC
reveals that, if the intercepts CR and CS in Figure 7(ii) are equal then △ABC is
either isosceles, with AC = BC, or the angle at C is right. To be more specific, if
6 ACB = π − θ, then it can be shown that these intercepts in Figure 7(ii) are given
by

CR =
ab(sin θ − cos θ)

a + b sin θ
; CS =

ab(sin θ − cos θ)

b + a sin θ
.

Now, a rich source of geometrically similar figures is provided by perspective. As
Figure 8(i) suggests, for a right triangle △ABC with right angle at C, there will
be an inscribed square in perspective from A with square placed externally on BC.
But such an inscribed square will then also be in perspective from B with the square
placed externally on AC. These perspectives give another way of seeing that the
intercepts CR and CS in Figure 1 are equal and so of identifying CRQS as a square
inscribed in △ABC.

A triangle admits an inscribed square standing on a side of the triangle if the altitude
perpendicular to that side is internal. In general, then, a triangle has either three
or one inscribed squares, with right triangles a borderline case in which two of the
altitudes are sides. A standard construction of an inscribed square is by perspective
from a square placed either on an internal altitude or on the side of the triangle
perpendicular to that altitude (see, for example, [18, (a)]; a rather different con-
struction is presented in [1, Prop, 14, pp. 10–11]). While Figure 8(i) is an instance
of this construction, Figure 8(ii) shows how another part of Euclid’s Windmill is
naturally associated with the construction of an inscribed square standing on the
hypotenuse of a right triangle. By the same token, there will also be a square on
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UV in perspective from C with the square placed externally on AB. In the case
where △ABC has a right angle at C, this latter square is inscribed in CRQS, as in
Figure 8(iii).

5 The unallocated lemma

First of all, let us identify the points of intersection R and S in Figure 1 with the
dividing points R′ and S ′ specified in Pappus’ unallocated lemma by (1). In Figure
1, the triangles △AFR and △BCR are similar, while AFHC is a square. So,

CR : RA = BC : AF = BC : AC.

Similarly, considering the similar triangles △ACS and △BDS together with the
square BDEC,

BS : SC = BD : AC = BC : AC.

Hence (1) holds for R′ = R and S ′ = S. Conversely, if (1) holds, we can argue
that AS ′D and BR′F are straight lines, showing that R′ and S ′ are the points of
intersection R and S respectively. With this identification in hand, we now drop
the primes, and work only with R and S, so that now (1) reads

BS : SC = BC : AC = CR : RA. (6)

Thus, we can now complete the proof of the lemma by appeal to our discussion in
Sections 2 and 3.

However, we are hampered in working through the proof of this unallocated lemma
given in the final portion of Mathematical Collections VII because the received text
is garbled. The proof starts off by showing that (6) implies that the intercepts CR
and CS are equal. But then an impatient interpolator interrupts to point out that,
if we have the altitude CP of the triangle in addition to (6), then we can infer that

(a): R and S are on the angle bisectors of the angles 6 APC and 6 BPC respectively;

(b): 6 RPS is right, so that CRPS is a cyclic quadrilateral; and

(c): consequently CR and CS are equal, since they subtend equal angles at P .

Curiously enough, neither line of attack seems to get to grips with the lemma as
stated.

We return to consider (b) in next section. But (a) is promising in its own right. It
is a matter of recognising in (6) a hint of the characterisation of angle bisectors by
means of ratios featured in Elements VI.3 . For, if P is the foot of the perpendicular
from C onto AB, then all three right triangles △ABC,△ACP and △CBP are
similar, so that

CP : AP = BC : AC = BP : CP. (7)

Comparing (7) with (6) yields

CR : AR = CP : AP ; BS : CS = BP : CP.

11



R

S
T

B P A

C

WZ

Y
X

Figure 9: Shared and inverted perspective

But the equality of these ratios is precisely the condition in Elements VI.3 ensuring
that R and S lie on the angle bisectors of 6 APC and 6 BPC respectively.

Since these latter angles are right, all the angles 6 APR, 6 CPR, 6 CPS and 6 BPS

are equal, in fact all are π/4. Thus, with angle bisectors in mind, CP is also the

angle bisector of 6 RPS. Now, there is a general lemma about the altitude of a

triangle as an angle bisector that is sometimes mentioned in connection with the

orthic triangle formed by joining the feet of the altitudes (see, for example, [12,

§6.2, p. 11]. In our present circumstances, we can apply this general lemma to infer

Pappus’ unallocated lemma from (a) in a comparatively self-contained manner.

Lemma Let △ABC be an arbitrary triangle; let R and S be points on AC and BC

respectively with T the point of intersection of AS and BR; and let P be the foot of

the perpendicular from C onto AB.

(i): If T lies on CP , then CP is the angle bisector of 6 RPS; and conversely

(ii): If CP is the angle bisector of 6 RPS, then T lies on CP .

Proof of Lemma (i): Suppose that, as indicated in Figure 9, W and Z are the
feet of the perpendiculars from R and S respectively and that AS and BR intersect
RW and SZ in X and Y respectively. Thus, CP is shared in perspective from both
A and B (compare the perspectival proof of Napoleon’s Theorem in [14, (b)]). In
particular, triangles △ACP and △ARW are in perspective from A, so that

RX : RW = CT : CP.

But similarly, looking from B, triangles △BCP and △BSZ are in perspective,
giving

SY : SZ = CT : CP.

Combining these last two equalities and rearranging the ratios yields

SZ : RW = SY : RX. (8)

Since RX and SY are parallel, the triangles △TRX and △TY S, shown shaded in
Figure 9, are in inverted perspective from T and so similar. The heights of this
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pair of triangles must therefore stand in the same proportion as their bases. With
respect to their parallel sides as bases, this means that

ZP : WP = SY : RW. (9)

Switching attention now to the right triangles △RPW and △SPZ, combination of
(8) and (9) reveals that they have their legs in the same proportion:

ZP : SZ = WP : RW.

This implies that these right triangles are similar. It follows that

6 CPS = 6 PSZ = 6 PRW = 6 CPR,

bearing in mind that RW and SZ are parallel to CP . This completes our proof
that CP is the angle bisector of 6 RPS.

Proof of Lemma (ii): Conversely, suppose that AS and CP intersect at T ′ and
that BT ′ intersects AC at R′. Turning this around, AS and BR′ intersect at T ′ on
CP , so part (i) of the Lemma applies and this CP is the angle bisector of 6 R′PS.
But if CP is known to be the angle bisector of 6 RPS, then R′ = R and so T ′ = T .
We conclude that T , the intersection of AS and BR, lies on CP as claimed.

Proof of Pappus’ Lemma: In leading up to the statement of the foregoing Lemma,
we saw that CP is the angle bisector of 6 RPS when R and S are points on AC and
BC satisfying (6). So, Pappus’ unallocated Lemma now follows as an immediate
consequence of part (ii) of our Lemma.

The rehearsal of these proofs allows us to reflect on the information placed at our
disposal by the hypothesis of Pappus’ Lemma in the context of what we know about
right triangles. The formulation of Pappus’ Lemma is akin to that of a celebrated
general theorem on concurrency of lines in a general triangle △ABC: if P ′, S ′ and
R′ are points on the sides AB, DC and CA respectively, then AS ′, BR′ and CS ′ are
concurrent if and only if

AP ′

P ′B
.
BS ′

S ′C
.
CR′

R′A
= 1.

The hypothesis (i) is exactly matched by the fact that, for a right triangle △ABC
with right angle at C, P ′ is the foot of the altitude at C when it divides the hy-
potenuse in duplicate ratio to the legs:

AP ′ : P ′B = AC2 : BC2.

Appeal to this general result therefore clinches swift confirmation of Pappus’ Lemma
— this is, in effect, the opening line of attack that Gergonne mounts in [4, (a)])
in rejoinder to [5]. Unfortunately, such reasoning would seem anachronistic, since
Giovanni Ceva (1647–1734) only published his theorem in 1678. However, it does
enable us to extract a characterisation of right triangles.

Theorem (Pappus-Ceva)Suppose that the sides AC and BC of a triangle △ABC

are divided at R′ and S ′ respectively such that

BS ′ : S ′C = BC : AC = CR′ : R′A.

Let AS ′ and BR′ intersect at T ′. Then △ABC is a right triangle with right angle

at C if and only if CT ′ is perpendicular to AB.
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Figure 10: Cyclic quadrilaterals and similar triangles

6 Cyclic quadrilaterals and similar triangles

Let us now return to pick up observation (b) in the previous Section that CPRS
is a cyclic quadrilateral. Since 6 RPS, as well as 6 RCS and 6 RQS, is right, we
have a five-point circle Γ through C, R, Q, P and S with diameter RS (see Figure
10(i)). Thus, we have now gathered proofs of all the assertions in Theorem 1 having
already dealt with parts (i) and (ii) in Sections 2 and 4. Having just mentioned
Ceva’s theorem at the end of the previous section, we might add that it can be used
to establish a more general result on concurrencies associated with a six-point circle
(see [17, pp. 104, 144–145]) Suppose a circle intersects each side of △ABC in two
points, say, P ′, P ′′ on AB, S ′, S ′′ on BC and R′, R′′ on CA, by extension of our
previous notation. Then, AS ′, BR′ and CP ′ are coincident if and only if AS ′′, BR′′

and CP ′′ are coincident. Our five-point circle may be viewed as a limiting case.

Turning to Theorem 2, we also see that 6 PRS and 6 PCS are equal, being angles
subtended by PS on the same arc of the circle Γ. But △ABC and △CBP are
similar, so 6 PCS, that is 6 PCB, is equal in turn to 6 BAC. Similarly, 6 PSR and
6 ABC are equal. It follows that △RSP and △ABC are similar right triangles.

On introducing B1, the centre of the square placed externally on AC, we see that,
as shown in Figure 10(ii), there is a further circle, Γa, say, on AC as diameter and
passing through P and B1, since 6 APC and AB1C are both right. But as the
chords AB1 and CB1 of Γa are equal, they subtend equal angles at P , that is to say
that PB1 is the angle bisector of 6 APC. Our discussion of observation (a) in the
previous Section now places R on B1P . Moreover, 6 CB1P is equal to 6 CAP , that
is, 6 CAB, as both are subtended by the chord CP on the same arc of Γa.

An exactly similar argument shows that for A1, the centre of the square placed
externally on BC, A1SP is a straight line bisecting 6 BPC while 6 CA1P is equal
to 6 CBA. But B1CA1 is a straight line, since

6 UCV = 6 B1CA + 6 ACB + 6 BCA1 = π/4 + π/2 + π/4 = π.

Hence, △B1A1P and △ABC are also similar right triangles. Taking the last three
paragraphs together, we see that the proof of Theorem 2 is complete.
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Notice that the proportions in which the similar right triangle △RPS,△B1PA1 and
△ABC stand to one another can be obtained by computing the hypotenuse of each
in terms of the legs a = AC and b = BC of △ABC:

ab
√

2

a + b
:
a + b√

2
:
√

a2 + b2.

The presence of the three isosceles right triangles shown shaded in Figure 10(ii)
facilitates the calculation of several other lengths in △ABC — a scaling factor of
(a + b)

√
a2 + b2 = (a + b)c has been applied in Figure 10(ii).

7 Retrospective

In Euclid’s development of Elements I , I.43 is the foundation of what is termed “the
application of area”, beginning in the very next proposition, I.44 , on the construc-
tion of a parallelogram having the same angle and area as a given parallelogram but
now with one side prescribed. Despite appearing to give something for nothing, this
method is sufficient for the solution of quadratic equations stated in terms of length
and areas. Proclus was so taken with I.44 as to attribute it to “godlike men of old”,
while Thomas Little Heath (1861–1940) wrote in endorsement that it “will always
remain one of the most impressive in all geometry” (see [6, Vol. 1, pp. 342–345]
or [7, Vol. 1, pp. 150–154]; and compare [2, pp. 34–38]). However, the use that
Heron makes of I.43 and its converse in establishing concurrency is rather different,
as well as less well-known — it passes unnoticed in [2]. (Reasoning in the style of
Figure 3(i) also provides one means of deriving the heights of distant or inaccessible
landmarks, but such practical problems of surveying seem more part of the ancient
traditions of Chinese or Indian geometry than that of the Greeks.)

In default of access to Heron’s own commentary in Greek, we are indebted to Abu’l
Abbas al-Fadl ibn Hatim al-Nayrizi (c. 875–c. 940) for thinking to acquaint readers
of Heron’s proof in a commentary in Arabic on Elements I (the commentary is
available in English translation in [11]). The proof clearly made a good impression
on Heath as he describes it as a “tour de force” in his edition of Euclid’s Elements

[6, Vol. 1, p. 367] and “worthy of note” in his History of Greek Mathematics [7,
Vol. 2, p. 426], including it at some length in both. But, at least as Heath presents
the proof, it may yet be more instructive than even he allows, in that it has a
curious gap: Heron’s preparatory lemma does not apply directly to the figure under
discussion, in effect Figure 3(i).

Whereas, in Section 2, we demonstrated the converse of Elements I.43 by reversing
Euclid’s proof for I.43 , for some reason Heron tempts logic by essaying a more
complicated line of argument. He starts out by showing, perfectly correctly, that
triangles in perspective from a common vertex have a common median through
that vertex, that is, that the mid-points of sides opposite the common vertex are
also in perspective from it. At several places earlier we have encountered figures
in perspective, but this result on medians is within the scope of Elements I . Next
comes some checking that the conditions in the preparatory lemma hold in Figure
3(i), that AX bisects EG and that the equality of BFXG and CEXI implies that
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Figure 11: Heron’s proof

IF is parallel to EG. The intent is to appeal to a shared median to infer that if AX
produced meets IF in Z, then Z is mid-point of IF , from which it can be deduced
that ZB is in line with AZ, as required. But where in Figure 3(i) are the triangles
in perspective from a common vertex?

Perhaps the presumption is that FG and IE when produced intersect on XA pro-
duced, as suggested in Figure 11(i), since this immediately yields triangles in per-
spective from that point of coincidence, consistent with Heron’s preparatory efforts.
But this would leave us in the unsatisfactory position that elaborate edifice Heron
erects to prove that one set of three lines is coincident is based on the prior concur-
rency of three other lines, as yet to be confirmed. Besides, in the case where ABDC
is a rhombus quartered by EF and GI, the lines FG, IE and XA are parallel.

As a way around this projective entanglement, we might instead produce IF in both
directions to meet AB and AC in F ′ and I ′ respectively, as shown in Figure 11(ii).
Now, triangles △AEG and △AI ′F ′ are indeed in perspective from their common
vertex A in view of Heron’s verification that EG and IF are parallel. Thus, Heron’s
lemma on shared medians allows us to conclude that, as AX bisects EG in Y , AX
produced bisects I ′F ′ in Z. This is not quite enough to round off Heron’s proof as
envisaged, since we need to show that Z bisects IF , not just I ′F ′. But triangles
△BFF ′ and △CI ′I are each congruent with △AEG and so congruent with each
other. In particular, FF ′ = EG = I ′I. Hence,

ZF = ZF ′ − FF ′ = I ′Z − I ′I = IZ,

confirming that Z is the mid-point of IF , as desired.

If much about Heron’s proof remains enigmatic, some mystery also attaches to why
the subject of Euclid’s Windmill surfaced again in print as a topic for investigation
so much later, with Vecten’s letter [15] in 1817 and then Hamett’s question [5] in
1823. Curiously enough, although Gergonne had published an extract from Vecten’s
letter in Annales, he does not mention Vecten in his response [4, (a)] to Hamett
some six years later, and neither do the other contributors, B. D. C. and Paul Jean
Joseph Querret (1783–1839), who joined the ensuing discussion in Annales [4, (b,c)].
Moreover, it was only with Querret’s treatment of the problem that this exchanged
regained the degree of generality already considered by Vecten — in fact, Querret
goes somewhat further in taking a general triangle with similar rectangles placed
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externally on the edges (compare [17, p. 81]). Gergonne, does concede that his own
first attempt, similar to the appeal to Ceva’s Theorem at the end of Section 5, would
not satisfy Hamett — or Proclus, too, for that matter. But he puts a brave face
on it, stoutly defending a robust attitude to admissible methods of proof [4, (a)
pp. 335–336]:

Cette démonstration, quelque simple et rigoureuse qu’elle soit, pourra fort

bien ne pas complètement remplir l’attente de M. Hamett, qui désire qu’on

ne s’y appuie sur aucune proposition postérieure à la XLV II.
e d’Euclide;

mais il y en a dans Euclide, avant celle-là, beaucoup plus qu’il n’en faut pour

démontrer les propriétés des triangles semblables, desquelles on déduit ensuite

immédiatement le théorème sur lequel nous nous sommes appuyés. Il n’y a

donc point de cercle vicieux dans tout ceci, et il ne s’agira que de disposer

les propositions d’Euclide dans un ordre un peu différent; ce qu’on peut sans

doute se permettre sans se rendre coupable de sacilége.

Vecten’s observations [15] on Euclid’s Windmill went much further than the coin-
cidence at T seen in Figure 1. For, whether or not △ABC is a right triangle, the
triangles △ABF and △CAJ associated with squares placed externally on the sides
of △ABC are related by a quarter turn. In consequence, A is equidistant from the
lines BF and CJ which intersect at right angles. If this point of intersection is
A0, then A is on the angle bisector of 6 FA0J . Vecten found that, with B0 and C0

defined analogously, the lines AA0, BB0 and CC0 are also concurrent — not surpris-
ingly, their point of coincidence came to be known as the Vecten’s Point of △ABC.
Thus, Vecten’s Point was suggested by consideration of Figure 1, but, unlike T , was
not visible in it. It is interesting, as an example of how geometry moves on, that
some sixty years later, the definition of Vecten’s Point, and how it might be viewed
changed, weakening the association with Euclid’s Windmill, although, of course, the
point remained the same (see Figure 12; and compare [17, p. 82], where the divorce
from Figure 1 seems complete).

It seems to have been Charles Ange Laisant (1841–1920) who, in 1877, first ex-
plicitly redirected attention [10] to the centres A1, B1 and C1 of the squares placed
externally on the sides of △ABC opposite the respective vertices A, B and C (for
some historical notes, see [3, 5th ed., esp. pp. 860–863], which also provides a gen-
eral reference for geometrical results of the period). As in Section 6, introducing the
centres of these squares presents us with cyclic quadrilaterals for deployment. Our
arguments there show how bisectors of right angles are associated with the presence
of isosceles right triangles in cyclic quadrilaterals. Applying this reasoning now, we
see, for example, first of all that the circle on BC as diameter passes through A0 and
A1, and then that A1 lies on the angle bisector of the right angle 6 BA0C. Hence,
AA0A1, and similarly BB0B1 and CC0C1 are straight lines, so that the Vecten Point
can be redefined as the common intersection of the lines AA1, BB1 and CC1, with-
out reference to construction lines considered by Euclid in proving Elements I.47

(as in [17, p. 82]).

This alternative definition was quickly spotted by Joseph Jean Baptiste Neuberg
(1840–1926), who realised further that it allowed the existence of Vecten’s Point to be
deduced from the concurrency of the altitudes of a triangle, since it is comparatively
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easy to identify AA1, BB1 and CC1 as the altitudes of the triangle △A1B1C1 [13].
Despite the clear difference in emphasis, perhaps this is not so far from Vecten’s own
thinking. Vecten was aware, for example, that HA0K is a straight line perpendicular
to AA0, with analogous results for EB0J and DC0F . Certainly, the reasoning in
Section 6, applied to the cyclic quadrilaterals A0CHF and A0JKB, shows that H
is on the angle bisector of the right angle 6 CA0F , while K is on the angle bisector of
the right angle 6 BA0J , so confirming Vecten’s observation — for what it is worth, H
and K may be viewed, after the manner of Laisant, as the centres of square placed
outwardly on CF and BJ . The fact that such pairs of lines are perpendicular then
plays into Neuberg’s redescription of the Vecten Point. Since B1 and C1 are the mid-
points of AH and AK, the triangles △AHK and △AB1C1 are in perspective from A
(compare Figure 12). Thus, B1C1 being parallel to HK, we know from Vecten that
it is perpendicular to AA0, that is to AA1, establishing Neuberg’s altitude property.
But then Vecten was modest, yet clear sighted, in self-appraisal [15, p. 322]:

Je ne vous envoie pas les démonstrations de ces diverses propositions,
parce qu’elles sont toutes extrément simples, et qu’elles se présentent,
pour ansi dire, d’elles-mémes en constrisant la figure.

.
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