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 A Round-Up of Square Problems

 DUANE DETEMPLE
 SONIA HAROLD
 Washington State University

 Pullman, WA 99164-3113

 Introduction

 Are squares, as their name suggests, really the boring "nerds" of the geometric world?
 We think not, and have gathered a number of our favorite problems that we hope
 show the square to be a fascinating figure. Many of the results deserve to be (and
 indeed are) theorems, but much of the fun seems to be in presenting the material in
 the form of problems. You are challenged to find your own solutions, and we hope you
 won't jump too quickly to the solutions we have provided.

 The problems are, at least roughly, divided into sections according to the number of
 squares involved. Many of the problems are new, at least to us, and others may be
 familiar to some readers. Even then, some novelty is found in most of the solutions,
 and in several places we have uncovered unexpected connections among what at first
 may seem to be unrelated problems. A concluding section provides some sources,
 though it is not always easy to know who deserves first credit. There should be little
 harm in rediscovering a neglected gem, and much interest and pleasure to be gained.

 Problems About One Square

 Problem 1. A square is erected,
 either externally or internally, on
 the hypotenuse of a right triangle.
 Show that the line segment from
 the vertex of the right angle to the
 center of the square makes 450
 angles to the legs of the right
 triangle.

 Solution 1. Here are two nice ways to solve this problem.

 (a) via tiling: Adding congruent
 copies of the right triangle to the
 remaining sides of the given square
 gives us a second square that makes
 the result visually obvious. The
 segment through the center of the

 second square is along a diagonal of
 the new square, so it bisects the
 right triangle.
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 1 6 MATHEMATICS MAGAZINE

 (b) via the inscribed angle theorem: Both the
 internally and externally erected square cases can
 be shown together. Construct the circle centered
 on the hypotenuse of the right triangle. The legs
 of the right triangle and the segments to the
 centers of the squares intercept 900 arcs on the \

 circle. By the inscribed angle theorem, each 450 00
 inscribed angle has half the measure of the 900
 arc, namely 450 450

 Problem 2. Congruent right triangles are - _--
 erected to the sides of a square, facing p
 alternately outward and inward as shown.
 Show that P, Q, R, and S are collinear. R __ ~~~~~~~S
 Solution 2. Combining the tilings shown in
 the solution of Problem 1 reveals that P, Q,
 R, and S are all on the diagonal of a

 circumscribed square.

 Problem 3. The shaded triangle at the right is formed by
 drawing segments from corners of the square to the midpoints
 of opposite sides, as shown. Show that the triangle is a right
 triangle with sides in the proportion 3:4:5.

 Solution 3. There is an elegant tiling solution, formed by
 overlapping the given figure in a square grid containing the

 points 4 2 and 4- along the edges of the square.
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 Problem 4. Let in and be positive integers with in > n. m-n B n
 The shaded right triangle, A ABC, is constructed in an in by
 in square as shown. Show that the triangle has sides in the mrn-

 integer proportions m

 (in2 -n2): 2inn: (in2+ n2).
 n

 mA

 (Note: Choosing in and n relatively prime and of opposite parity, it is well known
 that all primitive Pythagorean triples are of the form in2 - n2, 2inn, and in2 + n2.
 Thus the construction realizes all of the right triangles with integer sides in appropri-
 ately sized squares.)

 Solution 4. The square AEFG can be viewed as being F m- n B n G
 dissected into four triangles, as shown. We then obtain
 the area equation

 Dm

 E m

 area(AEFG) =area(A ADE) +area(A ABG) +area(A BFD) +area(A ABD).

 Letting

 a=BC,b=AC,c=AB=AD= in2 +n2,

 we see that the area equation becomes

 2 -inn inn (in-n)+ ac in2- =-+-+ 2 2 2 2

 Solving for a we find a = (in2 - n2)/c, from which we learn that

 b2=c2 _ a2 = (C4 - a2c2) =(c2 - ac) (C2 + ac)

 (in2+n2i_ n2 +n2 )(n2+n2+ in2-n2 ) 4rn2n2
 c2 c2

 That is, b = 2inn/c. Writing c = c2/c = (in2 + n2)/c we see that

 (in 2-n ) 2inn (in2 +n2)
 aob = 21:b= c + n

 Therefore, a:b: c =(in2-_n2 ):2inn: (in2+n 2).
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 1 8 MATHEMATICS MAGAZINE

 Problems About Two Squares

 Problem 5. A square is created by connecting each vertex of the unit square to a
 point on a nonadjacent side, as shown in these three examples. What is the area of
 each shaded square?

 112 112

 1/2 ~ ~ ~ ~ ~ ~ / 323 1
 1 2 1/2 112 13 1

 1 / ; 011 X t a12 a/3 X 2 3

 112 112 213 113 113 213

 Solution 5. In each case, an inscribed square grid makes the answers readily apparent
 as shown below. In each case the triangular regions lying in the exterior of the original
 unit square are paired with a congruent triangle within the unit square that lies
 outside the shaded square region. The dark-shaded squares are seen to have respec-
 tive areas ,, -40= ,, and 3

 Problem 6. Find the area of the shaded square
 contained within the unit square as shown, where

 O<r<l. t rr

 rr
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 Solution 6. A vertical segment drawn from a vertex of the shaded square to the

 opposite side has length 1 - r, compared to a length of V'1+ r of
 a corresponding segment in the unit square. Thus the ratio of r 1-r
 similarity is (1 - r)/ Vr + r2, making the area of the

 shaded square

 ( (l1r) 2

 2 k'3J~ ~~~ 2
 Forexample, if r= 3, then A= 2= 13 13

 1+(3 9

 in agreement with the dissection solution shown in Problem 5.

 Problem 7. Let the squares ABCD

 and AB'C'D' share a vertex at A, D
 where both squares are labeled
 clockwise.

 (a) Show that the segments BB' and
 DD' are the same length and lie on

 perpendicular lines. ..........
 (b) Let P be the point at which the
 perpendicular lines BB' and DD' D
 intersect. Show that the line CC'
 also passes through P, and is an angle
 bisector.

 (c) Show that the line AP
 is perpendicular to line CC'.

 Solution 7. (a) A 900 rotation about /.
 point A transforms A ABB' onto
 A ADD ', showing that the triangles
 are congruent. In particular, BB' = DD"'
 and are contained in lines that cross c
 at 900.

 (b) Draw the circumscribing circles of
 each of the squares. These circles
 intersect at A and P so (cf. Solution D
 1(b)) by the inscribed angle theorem
 we see that PC and PC' are

 each angle bisectors of the right
 angles at P.

 (c) Since the rays PA and PC intercept diametrically opposite points A and C of the
 circumscribing circle, ? APC is a right angle.

 Remanrk. An alternate proof of parts (b) and (c) can be based on the results of part
 (a) and Problem 1.
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 20 MATHEMATICS MAGAZINE

 Problem 8. Let squares ABCD and - - - - - -
 AB'C'D' share a vertex (as in Problem
 7). Show that the midpoints, Q and
 S, of the segments B'D and BD'
 together with the centers R and T
 of the squares form another square,
 QRST.C

 Solution 8. A pair of congruent
 parallelograms, AB 'ED and BFD' A
 have Q and S as their respective
 centers. Since a 900 rotation about R
 transforms AB'ED onto BFD'A we

 see that RS and RQ are congruent

 segments meeting at 900. Similarly, c
 QT and ST are congruent and
 orthogonal, so it follows easily that C
 QRST is a square.

 \F0/ D

 Remanrk 1: This result is sometimes known as the
 Finsler-Hadwiger theorem. It will be convenient
 later to refer to QRST as the Finsler-Hadwiger
 squzare determined by the given squares sharing a vertex at point A. Note that the
 entire configuration is uniquely determined by the three points A, R, and T.

 Remark 2: A visualization of the generation
 of the Finsler-Hadwiger squares is provided
 by tiling the plane with the octagon
 shown above. The centers of the

 parallelograms and squares are seen to
 form a square grid. A second square grid, of
 twice the linear size, is formed by the
 translates of the square CEC'F. This same
 tiling can also be used to visualize the
 results of Problem 7.

 Remnark 3: The result of Problem 8 is actually a special case of a more general
 theorem that is elementary yet of interest.
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 THEOREM. Let F0 and F1 denote two directly similar figures in the plane, where
 P1 E F1 corresponds to PO E F0 under the given similarity. Let r E (0, 1), and define
 Fr = ((1 - r)Po + rPI: PO E F0). Then Fr is also directly similar to F0.

 Proof We assume the figures are in the complex plane, so that the similarity has

 the form z -* az + b, where a and b are complex constants with a $ 0. Thus Fo is
 mapped to Fr by the map

 o?r(z) = (1 - r)z + r(az +b) =(1-r+ ra)z + rb,

 which has the form of a direct similarity transformation. U

 An example of the theorem is
 illustrated in the diagram at the right,
 where the figures are squares and
 r= 2. The Finsler-Hadwiger
 theorem is the special case where F0
 and F, share a common vertex.

 FO F,

 Problem 9. Squares have been
 inscribed in congruent isosceles
 right triangles in two different ways.
 Which square has the larger area?

 Solution 9. Triangular grids
 show that the respective areas are

 2 and 4. Thus 1 , or about is%, 2 ....
 more of the triangle's area is
 covered by the square on the left.

 2/4 = 1/2 4X9
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 22 MATHEMATICS MAGAZINE

 Problems About Three Squares

 Problem 10. Two side-by-side squares are constructed
 on a horizontal segment. The upper left-most and
 right-most vertices are then used as opposite vertices of

 a tilted larger square. Show that the large square has one
 vertex on the horizontal segment and another vertex on
 the extension of the common vertical sides of the small

 squares. Then compare the areas of the three squares.

 Solution 10. The configuration described in the problem

 statement is a thinly-disguised confirmation of the
 Pythagorean theorem, which is surely the most famous
 result about three squares in all of geometry. The
 dissected figure at the right makes it visually clear that
 the area of the large square is the sum of areas of the two

 smaller squares. The dissection is attributed to Tabit ibn
 Qorra (826-901), and was rediscovered in 1873 by Henry
 Perigal.

 Problem 11. Given any triangle ABC, erect
 outward facing squares on all three sides. Three
 additional triangles are then constructed, as
 shown in the figure. Show that all four triangles A
 have the same area.

 Solution 41. The tiling shown in the solution
 to Problem 8 provides a simple way to see why
 the triangles have equal area: extend each outer
 triangle to a parallelogram. Drawing the
 opposite diagonal forms triangles that are all
 congruent to A ABC, and therefore have areas
 equal to the original triangle of the problem.

This content downloaded from 
�������������132.72.138.3 on Sat, 19 Dec 2020 08:27:40 UTC�������������� 

All use subject to https://about.jstor.org/terms



 VOL. 69, NO. 1, FEBRUARY 1996 23

 Problem 12. Outward facing squares
 with centers D, E, and F are erected
 on the sides of an arbitrary triangle
 ABC. Next, parallelograms are
 constructed as shown, determining
 P, Q and R. Show that the segments
 AD, BE, and CF are concurrent at a
 point 0 that is the center of the '
 circumscribed circle of A PQR.

 R~~~~~~

 Solution 12. The result is evident in the beautiful tiling shown below For example,
 we easily see that 90? and - 90 rotations about D will take the point A to P and 9,
 respectively. Thus AD is the perpendicular bisector of P9.
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 24 MATHEMATICS MAGAZINE

 Problems About Four or More Squares

 Problem 13. Let squares be erected
 externally on the sides of a triangle
 ABC, with centers D, E, and F.

 (a) Show that the midpoints K, L, E
 and M of the sides of A ABC coincide ,' D P /
 with the centers of the squares K B\L
 erected internally on the sides of

 triangle DEF.

 (b) Show that the centers P, Q, and
 R of the squares erected externally
 on the sides of A KLM coincide
 with the midpoints of the sides of
 ADEF.

 The properties also hold if internally
 and externally are interchanged.

 Solution 13.

 (a) The Finsler-Hadwiger square (shown
 dashed) determined by the squares centered at
 D and E (see Remark 1 in Solution 8) has one
 vertex at M, the midpoint of side AC. But M is
 also seen to be the center of the square with side
 DE. A \ C

 (b) Construct squares with diagonals
 AB and BC. The Finsler-Hadwiger
 square corresponding to the squares
 whose diagonals are AB and BC has
 P, the midpoint of DE, as a vertex.
 Clearly P is also the center of the E
 externally erected square on side

 KK.

 A N
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 Problem 14. Construct squares whose diagonals are the sides of a quadrilateral

 ABCD. Let K, L, M, and N denote the external vertices, and P, Q, P', and Q' the
 internal vertices, of the squares, as shown at the left below.

 L L

 j ^ _ M

 K
 D

 N N

 (a) Show that P= P' if and only if Q = Q', as shown above on the right.
 (b) In the case that P = P' (and Q = Q'), show that:

 * the midpoints of the sides of ABCD form a square, EFGH;
 * the center, 0, of square EFGH is also the midpoint of segment PQ;
 * the sum of the areas of the two squares sharing vertex P is equal to the sum of the

 areas of the two squares sharing vertex Q.

 Solution 14. Suppose that P = P'. Then the squares with diagonals AB and CD
 generate the Finsler-Hadwiger square EFGH, which has its vertices at the midpoints
 of the sides of ABCD. By Remark 1 following Solution 8, there is a uniquje square
 centered at F which, together with the square AQ'DN, generates EFGH as their
 corresponding Finsler-Hadwiger square. But this square, centered at F, has diagonal
 BC, so Q = Q'. By the result in Problem 13(a) (which is Netuberg's theorem), applied
 to A BQP, we deduce that the center 0 of the square with side EF is at the midpoint
 of QP. By the result of Problem 7, the diagonals AC and BD lie on perpendicular
 lines; thus, as easily follows from the Pythagorean theorem, AB2 + CD2 = BC2 + DA2.
 This equation shows that the sums of the areas of opposite squares are equal.

 Problem 15. Squares are erected externally on K
 the sides of quadrilateral ABCD, with centers
 E, F, G and H. Show that the segments EG and L
 FH are congruent and lie on perpendicular lines.
 Similarly, if J, K, L, and M are the midpoints

 of the dashed segments shown, prove that JL G
 and KM are congruent segments that lie on
 perpendicular lines, with the length of these
 segments V2 times the length of EG and FH.

 Moreover, show that all four lines are concurrent, J M
 intersecting at point 0 at 450 angles. H M
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 26 MATHEMATICS MAGAZINE

 Solution 15. The configurations discovered K -

 in some of the preceding problems provide F L
 the keys. By Problem 13, the squares with
 diagonals EF and GH have a common vertex
 at the midpoint of AC, as we see in the E
 figure at the right. Similarly, the squares with G
 diagonals FG and EH have a common vertex

 at the midpoint of BD. Problem 7 showed us ' A
 that EG and FH are congruent and lie on
 perpendicular lines, that the same property
 holds for JL and KM, and that all four lines
 are concurrent. Moreover, the common length H
 of EF and GH is twice the length of the side
 of the Finsler-Hadwiger square (shown
 dashed) formed by the centers of the newly
 constructed squares. Similarly, the common
 length of JL and KM is twice the length of
 the diagonal of the Finsler-Hadwiger square.

 Sources and Additional Remarks for Selected Problems

 Problem 1 was inspired by a problem of Larry Hoehn [8]. The case of the internally
 erected square, and the inscribed angle proof, are apparently new. The first case of
 Problem 5 is attributed to Heinrich Dorrie by Edward Kitchen [9]. Kitchen's article
 solves the second case with a different tiling than ours, and also discusses a number of
 similar problems dealing with squares. Problem 7 (b) and (c), in a slightly different
 form, appeared as the first two parts of a problem of Andrew Cusumano [2]; his
 references indicate that the problem has reappeared several times beginning in 1919.
 A solution to the problem in [11] is similar to ours.

 The result of Problem 8, which introduced the Finsler-Hadwiger square [4], is
 proved in [5] in a very different way; [5] also contains a list of references, supplied by
 Murray Klamkin, related to the Finsler-Hadwiger theorem. The tiling shown in
 Remark 2 seems to be a new connection to the theorem (in a strange coincidence,
 almost to the day the tiling was first drawn, the same pattern was seen worn on a tie
 by comedian Tim Allen in the popular television show Home Improvement!). The
 result of Remark 3 was a rediscovery of what Howard Eves calles the fundamental
 theorem of directly simnilar figures [3]; the application to the Finsler-Hadwiger
 theorem seems to be new.

 Problem 9 was contributed by James Vamadore [12] as a calendar problem, but the
 simple dissection proof we have given is new. Problem 11 is due to Bishnu Naraine
 [10], who gives a trigonometric solution. A letter of Bo Burbank [1] gives the beautiful
 transformational proof we have reproduced. Problem 12 and the tiling shown in the
 solution seem to be new. Part (a) of Problem 13 is due to Joseph Neuberg
 (1840-1926); see [7]. Problem 14 (a) is a variant of the Douglas-Neumann theorem,
 discovered independently by Jesse Douglas and B. H. Neumann in 1940; see [3] for
 references. The first part of Problem 15, which shows the congruence and orthogonal-

 ity of the segments connecting opposite erected squares on a quadrilateral, is the
 well-known theorem of von Aubel (see [9], for example, for a vector proof). The
 extensions in Problems 13, 14, and 15 seem to be new, as are the connections to the
 Finsler-Hadwiger theorem in those problems.
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