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University of Durban-Westville
Introduction

The: following article presents some interesting affine properties of the conics that generally
do not appear 1n standard textbooks. They were accidentally discovered while working on a serics
of articles on transformation geometry (De Villiers, 1989, 1990, 1992, in press). It provides a nice
llustration of the power and usefulness of transformations at the undergraduate level, which in the
view of the author should be compulsory for prospective senior secondary mathematics teachers,

In contrast to the isemetric and similar transformation which respectively preserve the
congruency and shape of transformed figures, affine transformations in general do not prescrve
angle size or length of line segments. Under an affine transformation the following properties of a
plane geometric configuration remains invariant (unchanged):

+ incidence of corresponding poinis and lines

+ collinearity of corresponding points

+ parallelism of corresponding lines

* ratio in which a corresponding point divides a corresponding line segment.

For example, using the special affine transforming strerching and shearing we can transform
a square into a rectangle, rhombus or parallelogram, but not into a general trapezium or kile. A

square is therefore not an affine invariant, but a parallelogram is, since the parallelisim of opposite
sides are preserved.

The affine invariance of straight lines

A standard exercise 1s to show that Hineartly is preserved under affine transformations, 1.e. the
invariance of straight lines. This can easily be done as follows:

Consider the general equation for a straight line, namely y=mx+c, and the general
formuiae for an affine transformation, namety:

r'=di+ey+f
and where dh—ep # (),
y=gx+hy+i

Solving for x and y in terms of x' and y' we obtain:

—hx'+ey —ei + fh
DI T et il
) eg—dh
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Substituting these into the equation for a straight line we obtain the following;

¥y di — gf
eg—dh

which can be simplified to the standard form:

A

v=Mx+C

—hxvey'—¢i+ fh
eg—dh

1@:=1AM  F3

Michael de Villiers

where M’ and C' are expressible in terms of the constants ¢. d, e, f, g, h and i. This then concluded

the proof of the gencral result.

Figure 1 shows an example of the effect of an affine iransformation defined byx'=2x +yandy' =

y.on a straight liney = %

Figure 1

A

The affine invariance of the conics

Let us now investigate what happens to a standard parabola y = ax® + bx + ¢ under affine

transformations. As mentioned in De Villiers (1990), stretches of y=x" in the x— or y— directions
only produce magnifications or reductions, i.e. similar parabola which can be expressed in the form

y=ax®, But what about an affine transformation” What do we obtain?
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Let's consider the transformation of y = x* under the above mentioned affine transformation:

X=2x 4y
and
Y=y

Mar. @3 28681 18:51AM

Again solving for x and y in terms of x' and y’ and substituting into y = x* we obtain the

transtormed equation

2?2k y+yt-4y'=0,

P4

To graph this equation we can simply consider peints on the original graph and what happens
to them under the given transformation, For example, the point (1,1) is mapped onto x' = 2(1) + 1 =
3 and y' = 1, therefore the point (3,1). Figure 2 shows a number of plotted points from the
transformed equation which can clearly be seen to lie in the form of a parabola with an axis of
symmetry y = x + L. Is this always true? Will we always get a parabola?

Figure 2
YA
O (8,16)
rd

© @9 L © 159

onf 7 o &4

(L) o} o 31

o Ta— -
",v v 0,0 X

34



FROM

FRCULTY OFEDUCATION

FARx MO,

B3l 28448665

Mar.

BE 26681 18:31AM PSS

Michael de Villiers

Let vy consider some more examples, Using the atfine transformation:

r=yx-yandy =r+yony= .y’

we abtain the transtormed equation:

NN Y YT 202y =0

which, as shown in Figure 3, also lies in the form of a parabola (with an axis of symmetry y = -x).

Figure 3
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Similarly, if we use:

X==2x+ P4 +1
2

and

Y=x+y-2
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on y=x" we obtain :
4Xﬂ. __M4xiyr+y.2 _264\‘_12!)‘—14 - 0

praducing the parabolic curve shown in Figure 4. Note that the axis of symmetry cuts the x-axis at
(2,0) and passes through (1,-2), implying that its equation is y = 2x - 4.

Figure 4
Y 4 o (1Y) p
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How can we prove these observations, which suggest that any atfine transformation of
y=ax'+bx+c

always produces a parabola? For this purpose it is necessary to consider the general
representation of a plane conic:

px A 2gxy+ry? +2sx+ 2ty +u=0
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This equation represents a parabola i ¢ — pr=0, an cllipse if ¢° — pr <0 and a hyperbola if

g* — pr >0, Note that it represents a circle if p=rand g =0, and a rcc:tangulér hyperbolaifp +r=
0. (A proof is given in Fishback, 1969, pp. 215-217).

Substituting equations (1) and (2) (i.e. the solutions of x and y in terms of x"and y’ from the

general affine equations) into the genera! equation for a parabola y = ax® +hx +¢, we obtain the
transformed equation:

A ab’ X't = Qaehx’' v rae’y” 128 X' 2Ty +U'=Q

Since (—aeh)? — (ah® ae? ) =0 this equation clearly represents a parabola. However, this result
suggests the more general result that any parabola:

it 4 2gxy+yt + 2sx + 2y +u =0

with g® — pr=0 is an affine invariant. In this case we obtain the transformed equation:

(pH* = 2qhg + rg’ )X +2(geg + qhd — hep — gdr)x'y+(pe’ = 2qed + rd® )y* +28"x'+2T" y'+U"=0

The discriminam condition is now given by:

(ges + ghd — hep— gdrf —(ph® — 2qhg +rg’ ) pe® —2qed +rd")

which simplifies 1o;
gy + g h'd® + 2hepgdr — pri*d® — 2q° hged + pgle’

Since g° = pr in the case of a parabola, we can teplace pr by ¢ in the 3rd, 4th and 6th term
upon which this expression reduces to 0, thus proving the affine invariance of a parabola.
$imilarly, if we had an ellipse to start with, we can replace pr by ¢* +k where k = 0 so that

the expression reduces to —k{hd — ge)*. Since this value is always negative, the transformed
t equation is that of #n cllipse and proves the affine invariance of an ellipse. In the same way we can
prove the affine invariance of a hyperbola, but that is left as an exercise Lo the reader.

The affine equivalence of the conics

A standard exercise in transformation geometry is to show that any conic can be reduced to a
corresponding canonical (simpler) form by appropriate transformartions. For cxample, any parabola

can be reduced to x* + y =0, any ellipse (excluding here imaginary cases) to x” + y* =1 and any

hyperboia to X = yﬁ =1.

x



FROM

FRCULTY OFEDUCATION FARx HNO. @ B31 2844866 Mar. @82 28681 18:52AM P2

The affine invariance and line symmetries of the conics

This can be done in a variety of ways. Fishback (1969) for example uses a combination of
affine and isometric transformation 1o Mustrate this. Petofrezzo (1966) an the other hand uses ontly
isometric transformations, namely, a rotation, a rranslation and 2 reflection around y=xif
necessary, to reduce & general parabola to the form: ‘

ax* +y+e=0,

a general cllipse to the form:

¥
k=
a b
and a general hyperbola to:
PN
'_q - = |
a

The latter forms can however be further reduced by appropriate transformations. For example, the
given parabola can easily be reduced to the first form above by using a transiation to eliminate ¢
followed by a magnification of ¢ from the origin (see De Villiers, 1990). To further reduce the
given ¢llipse and hyperbola to the first [orms above, an affine stretch of ¥'=x and y'= av,

followed by a magnification of x'= ~ and y'= L is required,
a da

3ince each conic can be reduced to canonical form by means of a suitable combination of
affine transformations (including isometries and similarities), it is clearly also possible to map any
two cases of a particular conic onto each other with a suitable combination of affine
transformations, {e.g. if necessary we can reduce the one to canonical form, and then simply use the
inverse transformations by which the other would be reduced 10 canonical form, to map it onto the
other}. We can therefore say that each individual conic is alfine equivalent. The reduction method
described earlier for parabola also implies that any parabola can be mapped onto any other by only
using a4 combination of the isometrics and similarities, and therefore the stronger result that ail
parabola are similar. Note that ellipses and hyperbolas are not individually similar, since they
require affine transformation to be reduced to canonical form, Also note that it is not possible to
affinely transform one conic, e.g. a parabola, to another, say an ellipse. For that purpose, projective
transformations are required and it can be proved that all conics are projective equivalent.

One should be careful not to confuse the different concepts of affine invariance and affine
equivalence. The fact that a particular set of figures is invariant under certain transformations does
not necessarily mean that afl the figures from that set are equivalent under those transformations.
For exampic, every affine transformation sends a convex quadrilateral to another convex
quadrilateral, so convex quadrilateral is an affine invariant. It is not true, however, that any two
convex quadrilaterals are affine equivalent. For example, a parallelogram cannot be affinely
mapped into a quadritateral with only one pair of opposite sides equal. Conversely, equivalence
does not necessarily imply invariance. For example, all rectangles are affine equivalent, i.e. can be
mapped exactly onto each other by suitable stretches, but a rectangle is not an affine invariant,
sinee a shear for example, can map it onte a paraliclogram,
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The line symmetries of the conics

How can we find the ling symmetries of parabolas, ellipses and hyperbolas in gencral? Is it
possible to derive general formulae?

Let us first consider a general parabola defined by :

pxt + 2guy iyt +2sx + 20y +u=0
and
' =pr
After a rotation of the graph around the origin given by:
X =xcosd —yeind

and
y=xgind+ycosé

where
1 2g

@ = —arctan| o0
2 [(r - PJ

we obtain one of the following two transformed equations (under the conditions shown, which
follow easily from considening a couple of special cases):

(p+ryx 2 17(sc0s 8 ~15in @)X +2(s5in O+ tcos @)y +u=0
if
(€] [<ip]
or
r=p<(

(p+r)y*42(scos 8 —1sin @)X +2(ssin O +1cos @)y +u=0
i
4) i >1p)
oar

r=p>0

30
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Now equations (3) and (4) are simply standard parabolas with vertical and horizontal axes of
symmetry given by the respective equations:

. Fcos@ ~tsind

X =
p+r

W= ssin@+tcosd

) p+r

Since a rotation is an isometry, the transformed parabolas with their lines of symmetry are
congruent to the original. In order to obtain general equations for the lines of symmeiry for
parabolas in general, we need therefore only rotaic the above lines of vertical or horizoncal
symmetry back to their original positions by using the following transformations;

A= cos(—0)x' —sin(—8)y
and
y=sin(—-8)x +cos(—8)y .

Solving for x' and y* in terms of x and y and substituting into the above equations, we obtain;
scosf—rgin @

cos(—Nx +sin{—@)y=-——7—"—_
p+r

ssin@ +roos o
P+i'

—8in(—8)x + cos(—@)y = —

which reduce to the following general formulae for the kine of symmetry of a parabola:

yeot@—1
y=icotd+ ———
pt+r
(3 if
i< i
or

]‘=F{O
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stané+1

y=-—xtané -
p+r

v
(6) =7l
o
r=p>0

It should be noted that:

f= l.f,n"ctan 29
2 {(r—p)

is the angle berween the line of symmeiry and the y- or x-axes respectively, dependent on the
conditions given in formulae (5) and (6). Furthermore, according to standard convention 6> 0
implies ctockwize rotation, Also note the restriction that 8+ 0° in formula (3}, since we divided by

sin# to obtain it. When 85 0, = O and the axis of symmetry is them simply x = = . No such
J2
restriction 15 necessary in formula (6} since the domain of 8is —45° = 8< 45",

Let's now look at some examples. Firstly consider the parabola shown in Figure 4, namely :

4 —dxy+y —26x—12y~14=0

2(;?] =26.565". Sincelr| < |p| we determine cot8=2 and

Here we have 8=(.3 arCLan{
substilute 11 with p, r, s and ¢ into formula (5) above to obtainy = 2x - 4.
Similarly for the parabola:

.t2+2xy+_y2+2x—2y=0

shown in Figure 3, we obtain @ = 457 and since r = p > () we substitute into formula (6) to obtain y
= -x as the axis of symmetry. However, for the parabola:

X =2xy+y —4y=0

shown in Figure 2 we obtain @ = —45° and since r = p > 0 we also substitate into formuola (&) o
obtain y = x + 1 as the axis of symmetry. It is now left as an exercise for the reader 1o show thar is

y= —%x — 2 iy the axis of symmetry of the parabola:
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¥+ dxy+4y —12x+26y—14 =0

We can now easily draw a rough graph of the latter parabola hy considering the direction in
which its 'arms' are lying. From formula (4) we can sce that a general parabola with:

> [
would lie in the positive or negative x-direction respectively when the quotient:

ety
(scos @ - ¢sin @)

is positive or negative. Since 8> 0,5 < 0 and > 0 it follows that this quotient is positive and we
can draw the rough graph of:

Xt +dxy+4y —12x+26y-14=0

as shown in Figure 3.

Figure &
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In the same manner we can deduce that in peneral a parabola with Ir| <|p| or r=p < 0 would
lie in the positive or negative y-direction respectively when the gquotient

o tp*n)
(ssin@—tcor8)

is positive or negative. For example, since the axis of symmetry of the parabola:

ax% 4 Axy+y* +26x—12y-14=0

is y = —2x — 4 and its aforementioned quotient is positive, we can easily draw its rough graph as
shown in Figure 6.

Figure 6
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Of course, to determine the x- and y-imercepts, we respectively set y = 0 and v = 0, and then

correspondingly solve for x and y.

In order to derive cquations for the coordinates of the turning point of a parabola in general,
we first find the coordinates of the turning points of parabolas (3) and (4). For example:

=% _B —up+r)
"op+r ' 2o(p+r)
and and

Lo —u(ptr} ,_ B
) Y=

2B(p+r) P

Irl <{pi irl>|p|

or or

r=p<i r=p=(

whore:

o =scosd—(sing
anil

= xsin@+1cosd

Since & and y|, are the coordinates of a fixed point we directly use the transformations

&, =cos(—@)', —sin(—8)y,
and
¥ = sin{—0)x', +cos(—8)Y,

10 obtain the following formulae for the coordinatcs of the turning points of a parabola in gencral:

_ —2abcos + e — u(p+r)sin @
r 2B(p+n)
. g‘czﬁ sin @ + [_cxz —a(p+r)lcosd

o {7 2B(p+7)
|r] < |pl
o

r=p<
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‘x' _ —2afsin 6+ []32 —u(p+r)jcos 6
! 2a(p+r)
. —2afcost+ [ﬁ2 —u{p+r)isiné
(8) Y= 2a(p+r)
I > |l
or
r=p>0

For example, for the parabola shown Figure 6 we had @ = -26,563° .., which givesus & =

8.944.... 8 = -11.180..., o8 = -100 and @’ = 80. By substiution into formula (7) we obtain the
coordinates of the turning point as follows:

_:2(—]00)(Q.894...)+150(—0.447ﬂ_ 111.803... -1

. 10(—11.130...) T _11LR03..

_ :2(—l()())(-(').ﬁM"l...)"0w 150(0.894...) _ 223.606... 5

i 10{—11.180...) —111.803...

it is now left as an cxercise for the reader 1o verify that the turning points of the parabolas
shown in Figures 2 and 5 are respectively (-0.75,0.25), (0,00, (1,-2), and (-2,-1).

Let us now consider the axes of symmetry of ellipses and hyperbolas in seneral. After the

rotation of a general ellipse or hyperbola around the origin through the angle 8, we obtain the
following transformed equation:

(9) Ax? +Ay" H200 '+ 2y +u=0

where a and b are defined as in equations (7) and (8), and 1, and |7 are the solutions of the
characteristic eguation ;

A (p+rid+pr-g =0

Now equation (9) is simply a standard (rectified) cllipse or hyperbola with two axes of

B

o , . . . L -
gymmetry X' = o and y = e By again rotating these lines back to their original positions we
2

respectivecly obtain the following equations for the axes of symmetry in general;

—w——scme_[....ﬂaﬁo“

10 = xcoté+
(10) y=xco p»
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(11) y=-—xtan@-t staad+!
Az

Note that in the above formulae, if:

i<l

or

r=p<0
we have:

|2, > A4
but if:

I =|pl

or

r=p=0
we have:

] < -

Furthermore, in contrast to the ellipse or parabola, the hyperbola can have the additional
condition that r = -p, in which case Ap ==Az . Inthat case, if r = 0 we have A <Az, butifr<0
we have A = Az

Let's now consider some examples. For the ellipse:
§2x% —72xy +73y° +400x - 950y + 2725=0
we have @ = -36.869° . and A’ ~1254 + 2500 = 0.
Since:
Iri > iphs

it follows that A, = 25and A, = 100 and by substitution into equations (10} and (11), we obtain the
respective axes of symmetry as:

——it+2—5 and —éx-hé
YETRTT Y=Y
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Solving these two simultancous equations gives us the centre of the ellipse at (1,7). Ot
course, by substiluting these two equations into the equation of the ellipse, we can obtain the
coordinates of the intersections between the axes of symmetry and the ellipse in Figare 7.

Figure 7
y y =3/ + 2504
\\‘ 10 p It
‘\\ ‘,"‘ 4-2,9.4)
| o
(+0.2,8.0) N -
A
. - “\
. A8.2.5.4)
(-2.2,4.6) "y =4/3x + 25/3
- \\“ x
L_ -2 -1 1 2 3 ‘\\ 4

For the hyperbola:
o —10VExy + 1177 + 43 + 12)x=4{12:/3 - 1)y +156 =0

we have 6= -30° andA? ~ 124 — 64 = 0. Since |r|>|p| we must have |A,] <|A,} and therefore Ay =

4 and ko = 16. This then gives us the axes of symmetry as:
1 )
Y= 3x+2 and y»——ﬁx-b}\@.

By substitution as before we can now abtain the graph shown in figure 8 with coordinates

rounded off to the first decimal.
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Figure 8
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General equations for the asymptotes of a hyperbola can also
rectified position and utilising the previously demonstraled methods,
to the reader. For the hyperbola shown in Figure &, the as

y=151x—4.06 and y=0.06x+3.14 {cocffi

For the hyperbota:
Xy #2x—22y-6=0

1 .
= 0. Since r = 0 we must have A

we have 8= 45° and A°

%. This then gives us the axes of symmetry as:

y-"x—?n/i and y=—x+~2

48
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but that is left as an exercise
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cients rounded off 10 2 decimals).



FRaM : F
ACULTY OFEDUCAT IO FARx HNO. @ B31 2844866 Mar. B2 28681 18:55AM P19

‘Teaching Notes

By substituting as before. we abtain the graph shown in Figure 9 with asymptotes:

=242 and y= -2

Figure 9

y x=2N2
A1)

Concluding remarks

Hopefully this article has not only succeeded in showing the power of transformations, but
also shed a bit of light on the way in which new mathematics is often discovered or created. For
example, from the inductive generalization from 2 couple of spccial cases it was firstly
hypothesised that the standard parabola was an affine invaniant, The deductive explanation of this
conjecture however immediately led 1o the further generalisation that the gencral corics were affine
‘nvariants, At the same time this discovery prompted an investigation of equations for their line
symmeitries. Although the latter investigation was mainly pursued in a deductive fashion, the
consideration of special caser was novertheless necessary to identify the various discriminating
conditions. We therefore clearly see in this example how deductive and quasi-empirical thought
complement each other in mathematics,

Purthermore, it should be pointed out that although the conceptual content is relatively
elementary. the required technical proficiency is much more complex. In other words, the greatest
drawback and potential stumbling block in the formal treatment of transformation geometry does
not lie so much in relational undersianding, but in the instrumental mastery of it. Consult Skemp
{1971) for more information sbout these two dimensions of mathcmatics teaching.

On the other hand, new powerful symbolic manipulators for personal computers such as
Mathematica, Theorist or Derive can easily handle the instrumental manipulation of algebraic
equations such as 1hose in this arlicle. In other words, it can free us from rote, boring and/for
complex maniputarions, a5 well as the danger of making mistakes, so that we can focus more on
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conceptual aspects. In fact, the author is disappointed that he did net have such a program available
at the time he started this article, as it would have saved him a lot of unnecessary effort and time.
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