
15 
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[There is an underlying] formalist dogma that the only function of 
proof is that of verification and that there can be no conviction without 
deductive proof. If this philosophical dogma goes unchallenged, the 
critic of the traditional approach to the teaching of proof in school 
geometry appears to be advocating a compromise in quality: he is a 
sort of pedagogic opportunist, who wants to offer the student less 
than the 'real thing.' The issue then, is not, what is the best way to 
teach proof, but what are the different roles and functions of proof in 
mathematics . (adapted from Hersh, 1979, p. 33) 

The problems that students have with perceiving a need for proof are well 
known to all high-school teachers and have been identified without ex-
ception in all educational research as a major problem in the teaching of 
proof. Who has not yet experienced frustration when confronted by stu-
dents asking "Why do we have to prove this?" GOl1obolin (1954/1975) 
noted that "the students . .. do not . . . recognize the necessity of the logical 
proof of geometric theorems, especially when these proofs are of a visually 
obvious character or can easily be established empirically" (p. 61). 

The recent development of powerful new technologies such as 
and Geometer's Sketchpad with drag-mode capability 

has made possible the continuous variation of geometric configurations 
and allows students to quickly and easily investigate the truth of particu-
lar conjectures. What implications does the development of this new kind 
of software have for the teaching of proof? How can we still make proof 
meaningful to students? 

In this chapter, a brief outline of the traditional approach to the 
teaching of proof in geometry is critiqued from a philosophical as well as 
a psychological point of view, and in its place an alternative approach to 
the teaching of proof (in a dynamic geometry environment) is proposed. 
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From Lehrer, R. & Chazan, D. (Eds). (1998). Designing Learning Environments for developing Understanding of Geometry and Space. Mahwah, NJ: Lawrence Erlbaum Publishers, pp. 369-393.
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THE TRADITIONAL APPROACH TO 
THE TEACHING OF PROOF IN GEOMETRY 

DE VILLIERS 

Underlying Philosophy 

Philosophically, the traditional view of pr of has been and still is largely 
determined by a kind of philosophical rationalism, namely, that the 
formalist view that mathematics in general (and proof in particular) is ab-
solutely precise, rigorous, and certain. Mathematicsirom this perspective 
is seen as the science of rigorous proof. Although this rationalistic view 
has been strongly challenged in recent years by the quasi-empirical (or fa1-
libilist) views of, for example, Lakatos (1976), Davis and Hersh (1983, 
1986), Chazan (1990), and Ernest (1990), it is probably still held by the vast 
majority of mathematics teachers and mathematicians. 

In an extreme version of this view, the function (or purpose) of proof 
is seen as only that of the verification (conviction or justification) of the 
correctness of mathematical statements. 111. other words, proof is narrowly 
seen merely as a means to remove personal doubt and/ or that of skeptics, 
an idea that has one-Sidedly dominated teaching practice and most dis-
cussions and research on the teaching of proof (even by those who profess 
to oppose a formalist philosophy). Consider the following quotes, which 
only emphasize the verification function of proof: 

"A proof is only meaningful when it answers the student's doubts, 
when it proves what is not obvious" (emphasis added; Kline, 
1973, p. 151). 

"The necessity, the functionality, of proof can only surface in situations 
in which the students meet uncertainty about the truth of mathe-
matical propositions" (emphasis added; Alibert, 1988, p. 31). 

"A proof is an argument needed to validate a statement, an argument 
that may assume several different forms as long as it is convinc-
ing" (emphasis added; Hanna, 1989, p. 20). 

"Why do we bother to prove theorems? I make the claim here that the 
answer is: so that we may convince people (including ourselves) . 
. . . we may regard a proof as an argument sufficient to convince a rea-
sonable skeptic" (emphasis added; Volmink, 1990, pp. 8, 10). 

Arguing from the viewpoint that the results of all ind.uctive or quasi-
empirical investigation are unsafe, proof is seen (basically) as a prerequi-
site for conviction-therefore, proof is required. as the absolute guarantee 
of their truth. In other words, the only purpose of proof is to give the final 
stamp of approval: 

Reasoning by induction and analogy calls for recourse to observation 
and even experiment to obtain the facts on which to base each argu-
ment. But the senses are limited and inaccurate. Moreover, even if the 
facts gathered for the purposes of induction and analogy are sound, 
these methods do not yield unquestionable conclusions .... To avoid 
these sources of error, the mathematician utilizes another method of 
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reasoning ... . In deductive reasoning the conclusion is a logically in-
escapable consequence of the known facts. (Kline, 1984, pp. 11-12) 

Traditional Teaching Approach 
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Because proof is seen only as an instrument for the removal of doubt, the 
typical approach is to create doubts in the minds of students, thereby at-
tempting to motivate a need for proof. Traditional approaches in motivat-
ing proof in geometry can be classified into three main types, namely, pat-
tern failure, optical illusion, and false conclusion. 

Type 1: Pattern Failure. Pattern failure is often the "easiest" (most visual) 
way to create doubts: 

• n2 - n + 41 gives prime numbers for n = 1,2,3, ... but breaks down 
when n = 4l. 

• n points on a circle, when all are connected, divide it into 2n-1 re-
gions. This holds for n = 1 to n = 5, but breaks down when n = 6 
(see Fig. 15.1). . 

There are also famous historical examples where inductive general-
izations eventually turned out false. About 500 Be, Chinese mathemati-
cians (and much later also Leibniz) conjectured that if 2n - 2 is divisible by 
n, then 11 must be prime. It turns out that the empirical investigation sup-
ports the conjecture up to 2340 - 2. In all these cases 211 - 2 is divisible by n 
when 11 is prime, and not divisible by 11 when it is composite. However, in 
1819 it was discovered that 2341 - 2 is divisible by 341, even though 341 is 
composite (341 = 11 X 31). 

In 1984 Odlyzko and Te Riele showed that a conjecture by Franz 
Mertens (a contemporary of Riemann) over 100 years ago was actually 
false, despite computer support that showed that it was true up to n = 107. 

After giving some such examples to students, teachers are usually 
satisfied that a sufficiently critical attitude has been cultivated and pro-
ceed to introduce the proofs of geometrical results, as a means of verifying 
that those results are correct. 

Type 2: Optical Illusion. Another traditional approach is to provide stu-
dents with optical illusions in order to caution them against putting too 

FIG. 15 .1 Pattern failure approach of proof. Given n points on a circle, all connected, 2 n-1 = 
number of regions created. Pattern holds if 1 n 5 but breaks at n = 6. 
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much faith in the way a figure looks. The intention is to show the "superi-
ority of reasoning over experience." Consider the two examples in Fig. 
IS.2a. In both figures, although AB appears to be shorter than CD, AB and 
CD are, in fact, of equal length. Another often used example (see Fig. 
IS.2b) is an 8 X 8 square divided into four pieces, cut out and rearranged 
to form a S X 13 "rectangle" whose area is now suddenly 1 unit "greater" 
than that of the original square. What happens here is that actually a small 
narrow parallelogram with area of 1 unit is formed in the middle of the 
figure on the right, and the four pieces only appear to form a rectangle. 

After some such examples;. students are assumed to be convinced 
about the dangers of visual observation, and proof is then introduced as 
the "safe and sure" means of validating geometric statements that stu-
dents have already confirmed experimentally. 

Type 3: False Conclusion. Another approach is to give students a dia-
gram like that in Fig. IS.3a for any arbitrary triangle ABC, followed by a 
"proof" that it then follows that CA = CB (Le., that any triangle is isosce-
les). Children are then told that the obviously false conclusion arises be-
cause of the inaccuracy of the diagram (one of the points D and F always 
falls inside and the other outside, as shown in Fig. IS.3b), and are cau-
tioned to be careful about how a figure looks or is drawn-that, in fact, all 
sketches are essentially unreliable and we should only rely on our power 
of reasoning. 
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FIG. 15.2 Optical illusion approach to proof. (a) AS = CD. (b) Greater area. 
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FIG. 15.3 False conclusion approach to proof. 

A CRITICISM OF THE TRADITIONAL APPROACH TO 
THE TEACHING OF PROOF IN GEOMETRY 
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In what follows the author first criticizes the three types of examples given 
in the traditional teaching approach just given, before giving a more gen-
eral critique of the underlying philosophy. 

A Criticism of the Traditional Teaching Approach 

The problem with the Type 1 examples given is that they are all actually 
from number theory, and not geometry at all (note that the second exam-
ple is merely disguised as geometry). Although such examples are very 
appropriate in motivating proof within the context of number theory, their 
potentiallor motivating proof specifically within geometry is highly ques-
tionable. The author has yet to see a geom,etr.k configuration that has an 
invariant property for a very large number of cases (e.g., n = lOW), but 
then suddenly breaks down for n + 1 cases! 

It is furthermore important to note that there are subtle qualitative 
differences between such number-theoretic examples and the results of el-
ementary geometry. First, the variables involved in the former are dis-
crete, but the variables are continuous in the latter (e.g., angles, lengths). 
This is particularly the strong feature of drag-mode software like Cabri 
(Laborde & Bellemain, 1994) and Sketchpad <Tackiw, 1994), namely, that 
they allow for the continuous arbitrary vaciation and evaluation of geo-
metric configurations. (Strictly speaking, these drag-mode transfomla-
tions are only extremely good simulations of continuous variation, be-
cause the computer can calculate only discretely. More correctly, these 
variations are near-continuous.) 

Second, ffiallY of the elementary geometry theorems are far more 
self-evident than these number-theoretic examples and can even be ex-
plained informally. AltllOUgh students may not be able to articulate these 
subtle differences, many do sense it and are not necessarily convinced by 
such number-theoretic examples of the need for proof (as a means of ver-
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ification) in geometry. (Many children of course quickly learn to play the 
teacher's game and start subscribing to this view only to please the 
teacher. After many years of "indoctrination" of this type, it sometimes 
takes a lot of deep probing to uncover children's actual personal views in 
this regard.) 

The Type 2 examples (optical illusions) are deceitful: They do not en-
courag a need for deductive proof at all. For example, in the first two 
cases children are told to actually measure the lengths of AB and CD, find-
ing them in fact to be equal. These examples therefore encourage mea-
surement as the appropriate means of conviction/verification. 

One of the famous French mathematicians once said, "Geometry is 
the art of drawing correct conclusions from incorrectly drawn sketches." 
But the false conclusion in the Type 3 example shows how easily a (cor-
rect) logical argument can lead to a fallacy because of a construction error 
or a mistaken assumption in a sketch. Instead of motivating a need for 
proof, such examples actually emphasize the importance of quasi-
empirical testing (i.e., the accurate construction of some examples). 

These strategies of attempting to raise doubts in order to create a 
need for proof are even less likely to be successful when geometric conjec-
tures have been thoroughly investigated through their continuous varia-
tion with drag-mode software like Cabri or Sketchpad (see Olive, chap. 16, 
this volume). When students are able to produce numerous correspond-
ing configurations easily and rapidly then they simply have no (or very 
little) need for further conviction/verification. The problem is further in-
tensified by a facility on Cabri that enables students to check whether cer-
tain features of configurations such as concurrency, collinearity, parallel-
ness, perpendicularity, and equality of lengths are true in general. If not 
true in general, this facility produces a counterexample shown on screen. 
The computer, functioning as a "proof machine/' reduces (in effect, elimi-
nates) the students' ne d fo), self-generated proof (verification) . 

A Criticism of the Underlying Philosophy 

As pointed out by Bell (1976), the traditional view of verification/ 
conviction being the main (or only) function of proof "avoids consideration 
of the real nature of proof [because conviction in mathematics is often ob-
tained] by quite other means than that of following a logical proof" 
(p. 24). Research mathematicians, for instance, do not often scrutinize pub-
lished proofs in detail, but are rather led by the established authority of the 
autl)or, the testing of special cases, and an i:nformal evaluation wllether "the 
methods and result fit in, seem reasonable" (Davis & Hersh, 1986, p. 67). 

With very few exceptions, teachers of mathematics seem to believe 
that a proof, for the mathematician, provides absolute certainty and that it 
is therefore the absolute authority in the establishment of the validity of a 
conjecture. They seem to hold the naive view described by Davis and 
Hersh (1986) that behind each theorem in the mathematical literature 
there stands a sequence of logical transformations moving from hypothe-
sis to conclusion, absolutely comprehensible, and irrefutably guarantee-
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ing truth. This view, however, is false. Proof is not necessarily a prerequi-
site for conviction-to the contrary, conviction is probably far more fre-
quently a prerequisite for the finding of a proof. 

A mathematician simply does not think: "Hmm ... this result looks 
very doubtful and suspicious; therefore, let's try to prove 'it." For what 
other weird or obscure reasons, would we then sometimes spend months 
or years to prove certain conjectures, if we weren't already reasonably 
convinced of their truth? 

Polya (1954) wrote, for example, that 

having verified the theorem in several particular cases, we gathered 
strong inductive evidence for it. The inductive phase overcame our 
initial suspicion and gave us a strong confidence in the theorem. With-
out such confidence we would have scarcely found the courage to un-
dertake the proof which did not look at all a routine job. When you 
have satisfied yourself that the theorem is true, you start proving it. 
(emphasis added, pp. 83-84) 

In situations where .conviction provides the motivation for looking 
for a proof, the function of an eventual proof for the mathematician clearly 
cannot be that of verification/ conviction, but has to be looked for in 
terms of explanation, discovery, communication, systematization, self-
realization, and so forth. . 

Absolute certainty also does not exist in real mathematical research, 
and personal conviction usually depends on a combination of intuition, 
quasi-empirical verification, and the existence of a logical (but not neces-
sarily rigorous) proof. In fact, a very high level of conviction may some-
times be reached even in the absence of a proof. For instance, in their dis-
cussion of the "heuristic evidence" in support of the still unproved twin 
prime pair theorem and the famous Riemann hypothesis, Davis and 
Hersh (1983) concluded that this evidence is "so strong that it carries con-
viction even without rigorous proof" (p. 369). 

That conviction for mathematicians is not reached by proof alone is 
also strikingly borne out by the remark of a previous editor of the Mathe-
matical Reviews that approximately one half of the proofs published in it 
were incomplete and/or contained errors, although the theorems they 
were purported to prove were essentially true (Hanna, 1983, p. 71). It 
therefore seems that the reasonableness of results often enjoys priority 
over the existence of a completely rigorous proof. It is furthermore a com-
monly held view among today's mathematicians that there is no such 
thing as a rigorously complete proof (see Hanna, 1983, 1989; Kline, 1982). 
First, there is the problem that no absolute standards exist for the evalua-
tion of the logical correctness of a proof nor for its acceptance by the math-
emat.ical community as a whole. Second, as Davis and Hersh (1986) 
pointed out, mathematicians usually only publish those parts of their ar-
guments that they deem important for the sake of conviction, thus leaving 
out all routine calculations and manipulations, which can be done by the 
reader. Therefore a "complete proof simply means proof in sufficient de-
tail to convince the intended audience" (Davis & Hersh, 1986, p. 73). 
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In addition, attempts to construct rigorously complete proofs lead to 
such long, complicated proofs that an evaluative overview becomes impos-
sible and at the same time the probability of errors becomes dangerously 
high. For example, Manin (1981, p. 105) estimated that rigorous proofs of 
the two Burnside conjectures would LUn to about 500 pages each, and a 
complete proof for Ramanujan's conjectw'e would run to about 2000 pages. 
Even the proof for the well-known, but relatively simple, theorem of 
Pythagoras would take up at least 80 pages, according to Renz (1981, p. 85). 

Limitative theorems by Gadel, Tarski, and others during the early 
part of this century have highlighted the ill adequacy of the axiomatic 
method in general (and deductive proof in particular) for establishing 
firm foundations for the whole of mathematics. Lakatos (1976, 1978) also 
argued, from an epistemological analysis of examples from the history of 
mathematics, that proof can be fallible, and that it does not necessarily pro-
vide an absolute guarantee for the attainment of certainty: 

There have been considerable and partly successful efforts to simplify 
Russell's Principia and similar logistic systems. But while the results 
were mathematically interesting and important they could not re-
trieve the lost philosophical position. The grandes logiques cannot be 
proved true--nor even consistent; they can only be proved false--or 
even inconsistent. (Lakatos, 1978, p. 31) 

When investigating the validity of an unknown conjecture, mathe-
maticians normally not only look for proofs, but also try to construct 
counterexamples at the same time by means of quasi-empirical testing be-
cause such testing may expose hidd n contradictions, errors, or unstated 
assumptions. Frequently, the discovery I construction of counterexamples 
necessitates a reconsideration of old proofs and the construction of new 
ones. Personal certainty consequently also depends on the continued ab-
sence of counterexamples in the face of quasi-empirical evaluation. More 
generally, the attainment of personal conviction depends on positive justi-
fication andlor negative falsification (see Fig. 15.4). 

Personal Conviction 

/ 
Positive Negative 
justification falsification 

/ / "-.. 
Quasi-empirical Direct Absence of Reductio ad 
support proof counterexamples absurdum 

FIG. 15.4 Underpinnings of personal conviction. 
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THE COMPUTER AS A MEANS OF 
EXPLORATION AND VERIFICATION 
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Recent years have seen an explosion in the use of computers as a means of 
exploration and verification in many areas of mathematics: 

We find ourselves examining on the machine a collection of special 
cases which is too large for humans to handle by conventional means. 
The computer is encouraging us to practice unashamedly and in 
broad daylight, certain customs in which we indulge only in the pri-
vacy of our offices, and which we never admitted to students: experi-
mentation. To a degree which never appears in the courses we teach, 
mathematics is an experimental science .... The computer has become 
the main vehicle for the experimental side of mathematics. (Pollak, 
1984, p. 12) 

But typically, the question arises: "How do we know that the computer has 
not made a mistake?" As Appel and Haken (1984), however, pointed out: 

When proofs are long and highly computational, it may be argued 
that even when hand checking is possible, the probability of human 
error is considerably higher than that of machine error; moreover, if 
the computations are sufficiently routine, the validity of programs 
themselves is easier to verify than the correctness of hand computa-
tions. (p. 172) 

Griinbaum (1993), in talking about his computer proof of a result 
from Euclidean geometry, presented an interesting argument based on 
work by Davis (1977) that the probability of his (Griinbaum's) findings be-
ing false are, for all practical purposes, zero: 

The question arises what is the character of the facts I have been dis-
cussing? Do we start trusting numerical evidence (or other evidence 
produced by computers) as proofs of mathematics theorems? . . . Is 
there any consequence to be drawn from the fact that in example after 
example numerical evidence establishes the homothety of Q and Q2? 
. . . If we have no doubt-do we call it a theorem? . .. I do think that my 
assertions about quadrangles and pentagons are theorems . ... the 
mathematical community needs to come to grips with the possibilities 
of new modes of investigation that have been opened up by comput-
ers. (p. 8) 

This, of course, raises a serious question: With the increasing use of 
the computer as a means of verification, is there still a need for a deductive 
proof? Of course, if we see the function of a deductive argument as only 
that of verification, we might as well now start saying, as Horgan (1993) 
did, that "proof is dead or dying" and bury it. However, as discussed in 
the next section, a deductive proof is useful for other reasons. 
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PROOF AS A MEANS OF EXPLANATION AND DISCOVERY 

Although it is possible to achieve confidence in the general validity of a 
conjecture through the use of dynamic geometry features like property 
checkers and the drag-mode effect of continuous transformation across 
the screen, such features offer no satisfactory explanation why a given 
conjecture may be true. The software merely confirms that the conjecture 
is true, and even though the consideration of more and more examples 
may fortify a student's confidence, it gives no psychologically satisfactory 
sense of illumination-no insight or understanding into how a given con-
jecture is the consequence of other familiar results. Despite the convincing 
heuristic evidence in support of the earlier mentioned Riemann hypothe-
sis, for example, we may have a need for explanation: 

It is interesting to ask, in a context such as this, why we still feel the 
need for a proof .... It seems clear that we want a proof because . . . if 
something is true and we can' t deduce it in this way, this is a sign of a 
lack of understanding on our part. We believe, in other words, that a 
proof would be a way of understanding why the Riemann conjecture 
is true, which is something more than just knowing from convincing 
heuristic reasoning that it is true. (Davis & Hersh, 1983, p. 368) 

Gale (1990) also clearly emphasized, with reference to Feigenbaum's 
experimental discoveries in fractal geometry, that the function of the even-
tual proofs of these discoveries was that of explanation, not of verification: 

Lanford and other mathematicians were not trying to validate Feigen-
baum's results any more than, say, Newton was trying to validate the 
discoveries of Kepler on the planetary orbits. In both cases the valid-
ity of the results was never in question. What was missing was the ex-
planation. Why were the orbits ellipses? Why did they satisfy these 
particular relations? ... There's a world of difference between validat-
ing and explaining. (p. 4, emphasis added) 

Proof, then, when the results concerned are intuitively self-evident 
or supported by convincing quasi-empirical or computer evidence, is not 
concerned with "making sure," but rather with "explaining why." 

Furthermore, for most mathematicians, the clarification/ explana-
tion aspect of a proof is probably of greater importance than the aspect of 
verification. Halmos (quoted in Albers, 1982) noted that although the 
computer-assisted proof of the four-color theorem by Appel and Haken 
convinced him that the theorem was true, he would still personally have 
preferred a proof which also gave an "understanding": 

I am much less likely now, after their work, to go looking for a coun-
terexample to the four-color conjecture than I was before. To that ex-
tent, what has happened convinced me that the four-color theorem is 
true. I have a religious belief that some day soon, maybe six months 
from now, maybe sixty years from now, somebody will write a proof 
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of the four-color theorem that will take up sixty pages in the Pacific 
Journal of Mathematics. Soon after that, perhaps six months or sixty 
years later, somebody will write a four-page proof, based on the con-
cepts that in the meantime we will have developed and studied and 
understood. The result will belong to the grand, glorious; architec-
tural structure of mathematics ... mathematics isn't in a hurry. Effi-
ciency is meaningless. Understanding is what counts. (pp. 239-240) 
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Also to Manin (1981) and Bell (1976), explanation is a criterion for a 
"good" proof when stating respectively, that it is "one which makes us 
wiser" (Manin, 1981, p. 107) and that it is expected "to convey an insight 
into why the proposition is true" (Bell, 1976, p. 24). 

Critics of the amount of deductive rigor at school level often note 
that deduction in general (and proof in particular) is not a particularly 
useful heuristic device in the actual discovery of new mathematical re-
sults. This view, however, is false. There are numerous examples in the 
history of mathematics where new results were discovered/invented in a 
purely deductive manner; in fact, it is completely unlikely that some re-
sults (e.g., the non-Euclidean geometries) could ever have been chanced 
on merely by intuition and/ or only using quasi-empirical methods. A 
proof that explains a result can often lead to unanticipated generaliza-
tions. To the working mathematician, therefore, proof is not merely a 
means of a posteriori verification, but often also a means of exploration, 
analysis, discovery, and invention (e.g., compare De Jager, 1990; Schoen-
feld, 1986), as well as a means of systematization or communication (see 
de Villiers, 1990; van Asch, 1993). 

AN ALTERNATIVE APPROACH TO PROOF IN GEOMETRY 

Although most students who have extensively explored geometric conjec-
tures in dynamic geometry environments usually have no further need for 
conviction (d. Chazan, 1993), the author has found it relatively easy to so-
licit further curiosity by asking students why they think a particular result 
is true-to challenge them to explain it (see also Schumann & de Villiers, 
1993). Students quickly admit that inductive verification merely confirms; 
it gives no satisfactory sense of illumination. They find it quite satisfac-
tory, therefore, to view a deductive argument as an attempt at explanation 
rather than at verification. 

Particularly effective as a first introduction to deductive proof ap-
pears to be to present students early on with results where the provision 
of proofs enables surprising further generalizations. In what follows, four 
examples of introductory activities that the author has used with his own 
mathematics education students (prospective senior primary /junior sec-
ondary teachers) are briefly discussed, and worksheets for these activites 
are provided in the Appendix. Some of these student teachers also have 
tried out similar ideas with their students with a fair amount of success in 
microteaching contexts or in interview situations with individual stu-
dents. The author has also conducted a number of workshops with sec-
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ondary teachers around these ideas, and preliminary feedback seems to 
indicate that such an approach to proof in dynamic geometry is meaning-
ful (see also Koedinger, chapter 13, this volume). 

Working with a Kite 

Purpose. The aims of this worksheet (see Worksheet 1 in the Appendix) 
are (a) to allow students to discover and formulate a conjecture and (b) to 
guide them toward an explanation that illustrates the discovery function 
of proof. 

Formulation. The line segments consecutively connecting the midpoints 
of the adjacent sides of a kite form a rectangle (see Fig. 15.5). 

Deductive Explanation. A deductive analysis shows that the inscribed 
quadrilateral is always a rectangle, because of the perpendicularity of the 
diagonals of a kite. For example, according to an earlier discussed prop-
erty of triangles, we have EF IIAC in triangle ABC and HG IIAC in triangle 
ADC (see Fig. 15.5a). Therefore, EF IIHG. Similarly, EH IIBD IIFG, and there-
fore EFGH is a parallelogram. Because BD 1. AC (property of kite) we also 
have, for instance, EF 1. EH, which implies that EFGH is a rectangle (a par-
allelogram with a right angle). 

Looking Back. Notice that the property of equal adjacent sides (or an 
axis of symmetry through one pair of opposite angles) was not used at all. 
In other words, we can immediately generalize the result to a "perpendic-
ular" quad as shown in Fig. 15.5b. Furthermore, note that the general re-
sult was not suggested by the purely empirical verification of the original 
conjecture. Even a systematic empirical investigation of various types of 
quadrilaterals would probably not have helped to discover the general 
case because most people would probably have restricted their investiga-
tion to the more familiar quadrilaterals such as parallelograms, rectangles, 
rhombuses, squares, and rectangles. (Note that from the preceding expla-
nation we can also see that EFGH will always be a parallelogram in a!ly 
quadrila teral.) 

A 
A 

B 0 

c 
c 

FIG. 15.5 Explaining and generalizing to perpendicular quad. 
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Working with a Triangle 

Purpose. The aims of this worksheet (see Worksheet 2 in the Appendix) 
are (a) to allow students to discover and formulate a conjecture and (b) to 
guide them toward an explanation that illustrates the discovery function 
of proof. 

Formulation. The medians of a triangle are concurrent (see Fig. 15.6). 

Deductive Explanation. CD and BF are medians intersecting at O. Join A 
with 0 and extend to E on Be. We now have to show that E is the mid-
point of Be. If we denote the areas of the various triangles by the follow-
ing notation, area f1ABC H (ABC), we have 

BE (ABE) (OBE) (ABE) - (OBE) (ABO) 
EC = (AEC) = (OCE) = (AEC) - (OCE) = (ACO) 

Similarly, we find 
CF (BCO) 
FA = (ABO) and 

AD (ACO) 
DB = (BCO) 

But AD = DB and CF = FA. Therefore, (ACO) = (BCO) and (BCO) = (ABO), 
which implies (ACO) = (ABO). But the areas of these two triangles are pro-
portional to BE and EC as shown by the first equation. Thus, BE/EC = 1 
implies BE = Ee. 

Looking Back. Looking back at the first part of the explanation, it is in-
teresting to note that the product of the given ratios is always equal to I, 
irrespective of whether D, E, and F are midpoints. For example, 

BE CF AD (ABO) (BCO) (ACO) 
EC X FAX DB = (ACO) X (ABO) X (BCO) = 1 

This immediately implies the following general result: If three line seg-
ments AE, BF, and CD of f1ABC are concurrent, then 

BE CF AD 
EC X FAx DB = 1 

A A 
lo OF 

-----I... 5.0 
3.0 

B 3.0 E 5.0 C 
B E c 

FIG. 15.6 Explaining and generalizing to Ceva's theorem. 
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This interesting result, Ceva's theorem, was named after the Italian mathe-
matician who published it in 1678. In his honor, the line segments AE, BF, 
and CD joining the vertices of a triangle to any given points on the oppo-
site sides are called cevians. (Note that apart from the medians, the alti-
tudes and angle bisectors of a triangle can be considered as cevians, if ex-
tended to meet the opposite sides.) Although it is not known exactly how 
he discovered this result, it is likely that he discovered it in a similar fash-
ion as just outlined, and not merely by using construction and measure-
ment. 

Working with Equilateral Triangles 

Purpose. The aims of this worksheet (see Worksheet 3 in the Appendix) 
are (a) to allow students to discover and formulate a conjecture and (b) to 
guide them toward an explanation that illustrates the discovery function 
of proof. 

Formulation. If equilateral triangles DAB, EBC, and FCA are constructed 
on the sides of a right triangle ABC with LB = 90°, then DC, EA, and FB 
are concurrent (see Fig. 15.7). If we call the observed point of concurrence 
0, then it looks as if the six angles formed at 0 are each equal to 60°. By 
measurement and transformation on Cabri or Sketchpad, this can easily 
be confirmed (see Fig. 15.7a). In other words, quadrilaterals ADBO, BECO, 
and CFAO must be cyclic because the exterior angles are equal to the op-
posite interior angles (60°). We can now use this observation to produce 
the following explanation. (Note that this illustrates another function of 
quasi-empirical testing and exploration, namely, assistance in the discov-
ery !invention of a deductive explanation.) 

F 

D 

E E 

FIG. 15.7 Explaining and generalizing to any triangle. 
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Deductive Explanation. Construct circumcircles ADB and BEC to inter-
sect in Band 0 (see Fig. 15.7b). Connect 0 with A, B, C, D, E, and F. Then 
LBOE = LBCE = 60° (inscribed angles on the same chord). But LBOA = 
120° because ADBO is cyclic. Therefore, AOE is a straight line. Similarly, 
DOC is a straight line. Also LAOC = 360° - (LBOA + LBOC) = 360° - 240° 
= 120°. Therefore, CFAO is also cyclic, and, as before, it follows that BOF 
is a straight line. 

Looking Back. Because we did not use the property that LB = 90°, it fol-
lows that this result is true for any triangle ABC. Again we see that the in-
sight obtained from constructing a deductive explanation enables a fur-
ther generalization. (It should be pointed out that the point 0 is normally 
called the Fermat point of a triangle.) 

Working with a Quadrilateral 

Purpose. The aims of this worksheet (see Worksheet 4 in the AppendiX) 
are (a) to allow students 'to discover and formulate a conjecture, (b) to 
guide them toward two different explanations, and (c) to provide them 
with a Lakatosian experience by confronting them with a crossed quadri-
lateral shortly after they've discovered the interior angle sum of simple 
closed quadrilaterals. 

Primitive Formulation. The sum of the angles of any quadrilateral is 
equal to 360° (see Fig. 15.8). 

Deductive Explanation. Consider the convex and concave quadrilaterals 
ABCD shown in the tessellations in Fig. IS.9. In both cases, drawing diag-
onal BD would divide quadrilateral ABCD into two triangles ABD and 
BCD. (Note that the reflexive angle at D is the interior angle of concave 
quad ABCD and is therefore 360° -119° = 241°). Because the sum of the an-
gles of a triangle is equal to 180°, the sum of the angles of a quadrilateral 
is 2 X 180° = 360°. 

Alternative Deductive Explanation. Consider the convex and concave 
quadrilaterals ABCD shown in Fig. 15.9. Imagine that you are a bug crawl-
ing from A to B, and at B you turn through the angle p as indicated to face 
in the direction of C. Continue crawling around the perimeter, turning as 
indicated tluough angles q, r, and sat C, 0, and A, respectively, until at A 
you are facing in the same direction as you started. Because you are now 
facing in the same direction as when you started, you must have com-
pleted one revolution, 3600

• 

Therefore, p + q + r + s = 360°. The sum of the interior angles of 
ABCD is given by (180° - p) + (180° - q) + (180° - r) + (180° - s) = 720° -
(p + q + r + s) = 360°. 

(Note that in the concave case, angle r is negative in relation to the 
other angles because it has an opposite direction of rotation. The size of 
the interior angle at D is therefore 180° - r = 180° + 1 r I.) 
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FIG. 15.8 Discovering interior angle sum of quadrilaterals. 

A Counterexample? 

Construct a quadrilateral ABCD and measure its angles. Drag vertex D 
over side AB to obtain a figure similar to the one shown in Fig. 15.10. (On 
several occasions I've actually observed students using dynamic geome-
try software accidentally dragging polygons into crossed configurations 
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c 

q 

a \ b 

FIG. 15.9 Explaining exterior angle sum of convex (a) and concave (b) quadrilaterals. 

such as this, something that is clearly not likely to arise or even be consid-
ered in standard paper-and-pencil work.) Is the sum of its interior angles 
equal to 360°? Is the figure ABeD a "quadrilateral"? How does this relate 
to the result formulated and explained earlier? What do we mean by "in-
terior" angles? 

Most people's first reaction to such a counterexample is one of 
"monster-barring," in support of the theorem that the sum of the interior 
angles of all quadrilaterals is 360°. We might therefore try to define a 
quadrilateral in such a way that figures like these are excluded. Lakatos 

B 

D 

c 

FIG.15.1O The crossed quadrilateral. 
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(1976) describes a similar situation after the discovery of a counterexam-
ple to the Euler-Descartes theorem for polyhedra by the characters in his 
book: 

Delta: But why accept the counter-example? We proved our conjec-
ture-now it is a theorem. I admit that it clashes with this so-
called "counter-example." One of them has to give way. But why 
should the theorem give way, when it has been proved? It is the 
"criticism" that should retreat. It is fake criticism. This pair of 
nested cubes is not a polyhedron at all. It is a monster, a patholog-
ical case, not a counter-example. 

Gamma: Why not? A polyhedron is a solid whose surface consists of polygonal 
faces. And my counter-example is a solid bounded by polygonal 
faces. 

Delta: Your definition is incorrect. A polyhedron must be a surface: it has 
faces, edges, vertices, it can be deformed, stretched out on a 
blackboard, and has nothing to do with the concept of "solid." A 
polyhedron is a surface consisting of a system of polygons. (p. 16) 

From the preceding extract, we also see that refutation by counterex-
ample usually depends on the meaning of the terms involved, and conse-
quently definitions are frequently proposed and argued about. How can 
we define quadrilaterals? What do we mean by "interior" angles? How 
can we "save" the preceding theorem? 

Defining 

The intuitive essential meaning of a quadrilateral is that it has four sides 
(or line segments) and four vertices (or points). In other words, we could 
define a quadrilateral ABCD as a plane figure consisting of four (non-
collinear) points A, B, C, and D, connected by four line segments AB, BC, 
CD,andDA. 

According to this definition, the figure shown in Fig. 15.10 is a 
quadrilateral, and we refer to it as a crossed quadrilateral. (It also makes-
good sense to consider it a quadrilateral because the midpoints of its sides 
also form a parallelogram-see Worksheet 1 in the Appendix.) We can 
also refer to convex and concave quadrilaterals as simple quadrilaterals 
because they do not have any sides crossing each other. 

Typically, students do not want to accept Fig. 15.10 as a quadrilat-
eral. The following are responses obtained during individual interviews: 

A (Grade 11): But the way I look at it is that these sides [AC & BD] haven't 
been put in. This is the one side, and this is the other ... AB 
and DC are just diagonals. If you add those sides, then it'll 
be a complete quadrilateral, and you have four angles, and 
it'll equal 3600

• 

B (Grade 12): One can't say it's a quad if the angles are not 360°. It is not 
360°, therefore it is not a quadrilateraL ... 
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C (Grade 11): Can't you make this into a quadrilateral? .. Put D where 
B is, and C where D is ... if it lies on another type of plane, 
one can see that it is merely twisted. 

D (Grade 11): I can't give a reason, but it is not a quadrilateral ... I don't 
know why ... If I add these two angles [indicates angles 
AOD and BOC, where 0 is the intersection of AB and CD], 
then it will give you 3600

• 

Students then also spontaneously tried to define a quadrilateral in such a 
way as to exclude crossed quadrilaterals: 

A (Grade 11): We should say that two sides may not cross ... they can't in-
tersect. Yes, that would be the best thing, then you can't 
draw something like that. 

D (Grade 11): It must be consecutive points on a circle. How can I put it? If 
one goes clockwise, then the points must be consecutive, for 
example, A, B, C, and D. 

One way to extend the notion of "internal" angles to crossed quadri-
laterals is by first analyzing and defining the notion of internal angles for 
convex and concave quadrilaterals and then consistently applying that 
definition to crossed quadrilaterals. (This is a strategy often used in math-
ematics when extending certain concepts beyond their original domain.) 

Suppose we walk clockwise from A to B, B to C, and so on, around 
the perimeter of the convex quadrilateral shown in Fig. 15.11. The internal 
angle at each vertex will then be the angle through which the next side 
must be rotated clockwise (with the vertex as rotation center) to coincide 
with the previous side. In the same way we can now determine the inter-
nal angles of the crossed quadrilateral by walking around the perimeter as 
shown. This leads us to the surprising conclusion that the two reflexive 
angles indicated at A (360° - LBAD) and D (360° - LADC) are the "inter-
nal" angles of the crossed quadrilateral ABCD. 

We can now also calculate the sum of the interior angles of a crossed 
quadrilateral as follows: LABC + LBCD = acute LBAD + acuteLCDA; 
therefore, LABC + LBCD + (360° - LBAD) + (360° - LCDA) = 720°. 

B 
c 

_________ C 

c 

A 
D 

FIG.15.11 Defining internal angles in quadrilaterals. 
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Reformulation 

1. The sum of the interior angles of any simple quadrilateral is 360°. 
(Note that the first explanation assumes that at least one of the diagonals 
falls inside the quadrilateral, which makes the explanation invalid for 
crossed quadrilaterals. The second explanation is invalid for crossed 
quadrilaterals because the total turning p + q + r + s is not 360°, but 0°_ 
the two clockwise turns at Band C are canceled out by the two anticlock-
wise turns at D and A). 

2. The sum of the interior angles of any crossed quadrilateral is 720° 
(see preceeding explanation ). 

DISCUSSION 

"Proof" was not used anywhere in the preceding activities or in their 
worksheets in the Appendix. Instead, the word explanation was used pre-
cisely to emphasize the intended function of the given deductive argu-
ments. The problem is that the word proof in everyday language carries 
with it predominantly the idea of verification or conviction, and to use it 
in an introductory context would implicitly convey this meaning, even if 
the intended meaning is that of explanation. Tentative results with work-
sheets like those in the Appendix indicate that the presentation of proof in 
dynamic geometry as a means of explanation appears to be a viable alter-
native to the traditional approach. 

The teacher's language is particularly crucial in this introductory 
phase. Instead of saying the usual, "We cannot be sure that this result is 
true for all possible variations, and we therefore have to (deductively) 
prove it to make absolutely sure," students find it much more meaningful 
if the teacher says: "We now know this result to be true from our extensive 
experimental investigation. Let us however now see if we can EXPLAIN 
WHY it is true in terms of other well-known geometric results, in other 
words, how it is a logical consequence of these other results." 

It is necessary to discuss in some detail what is meant by an "ex-
planation." For example, regular observation that the sun rises every morn-
ing clearly does not constitute an explanation; it only reconfirms the valid-
ity of the observation. To explain something, we have to explain it 
in terms of something else (e.g., the rotation of the earth around the 
polar axis). Students may need to be guided to appropriate explanations 
(proofs), the production of alternative explanations, and their comparison. 
Lack of initial participation in the actual activity of explaining (proving) has 
also been reported by teachers who have tried out some of these ideas at 
school level, and it appears that, in our experience, only after considerable 
concerted exposure to work of this kind do students become proficient in 
constructing their own explanations and critically comparing them. What is 
significant, however, is that, when proof is seen as explanation, substantial 
improvement in students' attitudes toward proof appears to occur. 

The activities in this chapter, of course, assume that students have al-
ready, over a period of, say, 2 to 3 years, accumulated quite a large body of 
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geometric knowledge by experimental exploration with dynamic geome-
try software. For example, students should already know various proper-
ties of quadrilaterals and that the line segment connecting the midpoints 
of two sides of a triangle is parallel to and equal to half the third side. They 
should also already know the area formula for triangles, properties of 
cyclic quadrilaterals, and the sum of the angles of a triangle. 

Later we can reason "backward" to arrive at the basic axioms and 
definitions of geometry. This process of a posteriori axiomatization is typ-
ically used in real mathematical research: Axioms are usually not the be-
ginning, but the end of such research. 

The last section (working with a counterexample) is intended to 
recreate a typical Lakatosian situation where a counterexample to a result 
is presented after its deductive explanation (proof). To convince the stu-
dents that it might be possible to consider Fig. 15.11 as a quadrilateral, it is 
useful to remind them of the exploration of the work with the kite and the 
consequent explanation, showing them that if we consecutively connect 
the midpoints of its sides, we also obtain a parallelogram. Only after much 
discussion is it possible to introduce and clarify an acceptable definition 
for quadrilaterals in general, making distinctions between simple closed 
quadrilaterals and crossed quadrilaterals, and appropriately reformulat-
ing the result. Another example that could be used as a follow-up is to 
consider the following and its explanation: "The opposite angles of a 
cyclic quadrilateral are supplementary." Again a crossed cyclic quad is the 
counterexample. It also should be noted that although all simple quadri-
laterals tessellate, crossed quadrilaterals cannot tessellate because they 
overlap. 

It should perhaps be pointed out that I fully agree with Hanna (1995) 
that Lakatos's model of heuristic refutation ought not to be taken as an all-
encompassing model for the philosophy of mathematics, nor for curricu-
lum development and design in general, as there are many historical 
counterexamples to the process Lakatos describes. However, I believe that 
the Lakatosian (fallibilist) view compliments the Platonist and Formalist 
views of mathematics and that we should ensure that students are given 
activities and experiences that reflect each of these. As Davis and Hersh 
(1983) pointed out, none of these views are "correct" as each one is in-
complete and one-sided if taken only by itself (p. 359). 

SOME CONCLUDING COMMENTS 

Traditionally the role and function of proof in the geometry classroom 
have either been completely ignored, or proof has been presented as a 
means of obtaining certainty (i.e., within the context of verification/ 
conviction). However, as pointed out in this chapter, mathematicians of-
ten construct proofs for reasons other than that of verification/ conviction 
(d. Hersh, 1993). The popular formalistic idea of many contemporary 
mathematics teachers, that conviction is a one-to-one mapping of deduc-
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tive proof, should therefore be completely abandoned; conviction is not 
gained exclusively from proof alone, nor is the only function of proof that 
of verification/ conviction. Not only does such an approach in a dynamic 
geometry environment represent intellectual dishonesty, but it does not 
make sense to students. 

Rather than one-sidedly focusing on proof as a means of verification 
in geometry, the more fundamental function of explanation and discovery 
ought to be used to present proof as a meaningful activity. At the same 
time, attention should be gIven to the communicative aspects thereof by 
actually negotiating with students the criteria for acceptable evidence, ex-
planatioDS, and arguments. Furthermore, in mathematics, as anyone with 
a pit of experienc will testify, the systematizati n function of proof comes 
to the fore only at a very advanced stage and should, therefore, be with-
held in an introductory course to proof. 
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APPENDIX 

Worksheet 1 

(a) Construct a dynamic kite using the properties of kites explored 
and discussed in our previous lessons. 

(b) Check to ensure that you have a dynamic kite, i.e., does it always 
remain a kite no matter how you transform the figure? Compare 
your construction(s) with those of your neighbors-is it the 
same or different? 

(c) Next construct the midpoints of the sides and connect the mid-
points of adjacent sides to form an inscribed quadrilateral. 

(d) What do you notice about the inscribed quadrilateral formed in 
this way? 

(e) State your conjecture. 
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(f) Grab any vertex of your kite and drag it to a new position. Does 
it confirm your conjecture? If not, can you modify your conjec-
ture? 

(g) Repeat the previous step a number of times. 
(h) Is your conjecture also true when your kite is concave? 
CD Use the property checker of Cabri to check whether your conjec-

ture is true in general. 
(j) State your final conclusion. Compare with your neighbors-is it 

the same or different? 
(k) Can you explain why it is true? (Try to explain it in terms of 

other well-known geometric results. Hint: construct the diago-
nals of your kite. What do you notice?) 

(1) Compare your explanation(s) with those of your neighbors. Do 
you agree or disagree with their explanations? Why? Which ex-
planation is the most satisfactory? Why? 

Worksheet 2 

(a) First construct a triangle. Next construct the midpoints of the 
sides. 

(b) Now connect the midpoint of each side with the opposite vertex 
of your triangle. These line segments are called medians. What 
do you notice about these medians? 

(c) State your conjecture. 
(d) Grab any vertex of your triangle and drag it to a new position. 

Does it confirm your conjecture? If not, can you modify your 
conjecture? 

(e) Repeat the previous step a number of times. 
(f) Is your conjecture also true when your triangle is obtuse, sca-

lene, or right-angled? 
(h) Use the property checker of Cabri to check whether your conjec-

ture is true in general. 
(i) State your final conclusion. Compare with your neighbors-is it 

the same or different? . 
(j) Can you explain why it is true? (Try to explain it in terms of 

other well-known geometric results. Hint: Consider the ratios 
between the areas of triangles ABO and ACO, BCO and ABO, 
and ACO and BCO.) 

(k) Compare your explanation(s) with those of your neighbors. Do 
you agree or disagree with their explanations? Why? Which ex-
planation is the most satisfactory? Why? 

Worksheet 3 

(a) First construct a dynamic right triangle ABC with LB = 90°. 
(b) Using the macro-construction facility of Cabri (or the script fa-

cility of Sketchpad), outwardly construct equilateral triangles 
DAB, EBC and FCA on the sides of your right triangle. 
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(c) Draw DC, EA and FB. What do you notice? 
(d) State your conjecture. 

393 

(e) Grab any vertex of your right triangle and drag it to a new posi-
tion. Does it confirm your conjecture? If not, can you modify 
your conjecture? 

(e) Repeat the previous step a number of times. 
(f) Is your conjecture also true for any shape of your right triangle? 
(h) Use the property checker of Cabri to check whether your conjec-

ture is true in general. 
(i) State your final conclusion. Compare with your neighbours-is 

it the same or different? 
(j) Can you explain why it is true? (Try to explain it in terms of 

other well-known geometric results. Hint: Consider the six an-
gles at the point of intersection.) 

(k) Compare your explanation(s) with those of your neighbours. Do 
you agree or disagree with their explanations? Why? Which ex-
planation is the most satisfactory? Why? 

Worksheet 4 

(a) Construct a dynamic quadrilateral ABCD. Rotate the quadrilat-
eral through around the midpoints of all its sides (give it half-
turns). (Time-saving hint: In Cabri first define a macro-construc-
tion for half-turning a quadrilateral around the midpoint of one 
of its sides, and then use it for [al and [bl.) 

(b) Give each of the newly formed quadrilaterals a half-turn around 
the midpoint of its sides. 

(c) Measure the four angles of your quadrilateral ABCD, as well as 
the four angles around vertex C. 

(d) Carefully compare the angles around vertex C with the angles of 
ABCD. What do you notice? 

(e) What can you say about the sum of all the angles around vertex 
C? What does this say about the sum of the angles of quadrilat-
eraIABCD? 

(f) Grab any vertex of your quadrilateral ABCD and drag it to a 
new position. What can you say about the sum of all the angles 
around vertex C? What does this say about the sum of the angles 
of quadrilateral ABCD? 

(g) Repeat the previous step a number of times. 
(h) Is your observation also true if ABCD is concave? 
(i) State your final conclusion. Compare with your neighbors-is it 

the same or different? 
(j) Can you explain why it is true? (Try to explain it in terms of 

other well-known geometric results. Hint: Draw a diagonal of 
the quadrilateral ABCD.) 

(k) Compare your explanation(s) with those of your neighbors. Do 
you agree or disagree with their explanations? Why? Which ex-
planation is the most satisfactory'? Why? 



DESIGNING LEARNING 
ENVIRONMENTS FOR DEVELOPING 
UNDERSTANDING OF GEOMETRY 

AND SPACE 

Edited by 

Richard Lehrer 
University of Wisconsin-Madison 

Daniel Chazan 
Michigan State University 

LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS 
1998 Mahwah, New Jersey London 



Copyrighte 1998 by Lawrence Brlbaum Associates, Inc. 
All rights reserved. No part of this book may be reproduced 
in any form, by photostat, microfilm, retrieval system, or 
any other means, without prior written permission of the 
publisher. 

Lawrence Erlbaum Associates, Inc., Publishers 
10 Industrial Avenue 
Mahwah, NJ 07430 

Cover design by Kathryn Houghtaling Lacey 

Library of Congress Cataloging-in-Publication Data 

Lehrer, Richard. 
Designing Learning Environments for developing un-

derstanding of geometry and space / Richard Lehrer, 
Daniel Chazan 

p. cm. 
Includes bibliographical references and indexes. 
ISBN 0-8058-1948-7 (alk. paper). -ISBN 

0--8058--1949-5 (pbk.: alk. paper) 
1. Geometry-Study and teaching. I. Chazan, Daniel. 

II. Title. 
QA46l.L45 1998 
516'.0071-dc21 97-48323 

CIP 

Books published by Lawrence Erlbaum Associates are printed 
on acid-free paper, and their bindings are chosen for strength 
and durability. 

The final camera copy for this work was prepared by the 
author, and therefore the publisher takes no responsibility for 
consistency or correctness of typographical style. 

Printed in the United States of America 
10 9 8 7 6 5 4 3 2 1 


