An Interesting Duality in Geometry

Michael de Villiers, Mathematics Education
 University of Durban-Westville
 profmd@mweb.co.za

http://mzone.mweb.co.za/residents/profmd/homepage.html

This paper will briefly discuss an interesting duality between sides and angles in Euclidean geometry. It will be presented in relation to the concepts angle and perpendicular bisector, incentre and circumcentre, and the quadrilaterals.

Hierdie referaat sal kortliks 'n interessante dualiteit tussen sye en hoeke in Euklidiese meetkunde bespreek. Dit sal aangebied word met betrekking tot die konsepte hoekhalveerlyne en middelloodlyne, insenter en omsenter, en die vierhoeke.

Duality is a special kind of symmetry. In everyday language, a common duality exists between antonyms such as hot and cold, tall and short, love and hatred, male and female, etc. Basically, the one concept is defined by and understood in terms of the other, and together they form a whole which complement and enrich each other.

In mathematics, two theorems or configurations are called dual if the one may be obtained from the other by replacing each concept and operator by its dual concept or operator. Perhaps surprisingly, such dualities appear in many parts of mathematics, for example, projective geometry, Boolean algebra, Platonic solids, tessellations, graph theory, trigonometry, etc.

Interestingly, there exists a similar, although limited duality between the concepts angle (vertex or point) and side (line segment) within Euclidean plane geometry which we will briefly explore here. (A more extensive exploration is given in De Villiers (1996)). For example the duality between the concepts "angle bisector" and "perpendicular bisector" can be formulated as follows:

An angle bisector is the locus of all the A perpendicular bisector is the locus of all points equidistant from the two sides of an the points equidistant from the two angle (see Figure 1a). endpoints of a line segment (side) (see Figure 1b).

Figure 1

The following two theorems involving these concepts are therefore also dual:
The angle bisectors of the angles of any The perpendicular bisectors of the sides of triangle are concurrent at its incentre (the centre of the inscribed circle). any triangle are concurrent at its circumcentre (the centre of the circumscribed circle).

In fact, these two theorems can furthermore be generalised to any polygon as follows:
The angle bisectors of any circum polygon The perpendicular bisectors of any cyclic (a polygon circumscribed around a circle) are concurrent at the incentre of the polygon (e.g. see Figure 2 a which shows a circum quad). polygon are concurrent at the circumcentre of the polygon (e.g. see Figure 2b which shows a cyclic quad).

Figure 2
The general proofs are really quite simple. For example, for the first result we have that the incentre is equidistant from all the sides (radii of circle are perpendicular to sides). But each angle bisector is the locus of all points equidistant from its two adjacent sides. Therefore each angle bisector must pass through the incentre. Conversely, one should also note that this is a very useful condition for a polygon to be circumscribed around a circle. For example, for a polygon to have an incircle it must have a point which is equidistant from all the sides. Therefore, the angle bisectors must meet in a single point, i.e be concurrent.

The second result can similarly be proved, and nicely illustrates the duality under discussion. The circumcentre is equidistant from all the vertices (radii are equal), but each perpendicular bisector is the locus of all the points equidistant from the endpoints (vertices) of each side. Therefore each perpendicular bisector must pass through the circumcentre. Conversely, one should note that this is a very useful condition for any polygon to be inscribed in a circle (be cyclic). For example, for any polygon to have a circum circle it must have a point which is equidistant from all the vertices. Therefore, the perpendicular bisectors must meet in a single point, i.e. be concurrent.

This duality between angle and side is nicely reflected in the different types of quadrilaterals as shown below in tabular form. For example, the rectangles and rhombi, isosceles trapezia and kites, and cyclic and circum quads are each other's duals. On the other hand, the squares and parallelograms are their own duals; in other words, self-dual.

Square

All angles equal	All sides equal
Circumscribed circle (cyclic)	Inscribed circle (circum quad)
An axis of symmetry through each	An axis of symmetry through each pair of opposite sides

Rectangle	Rhombus
All angles equal	All sides equal
Circumscribed circle (cyclic)	Inscribed circle (circum quad)
An axis of symmetry through each pair of opposite sides	An axis of symmetry through each pair of opposite angles

Isosceles trapezium	Kite
Two pairs of equal adjacent angles	Two pairs of equal adjacent sides
One pair of equal opposite sides	One pair of equal opposite angles
Circumscribed circle (cyclic)	Inscribed circle (circum quad)
An axis of symmetry through one pair of opposite sides	An axis of symmetry through one pair of opposite angles

Cyclic quad	Circum quad
Circumscribed circle (cyclic)	Inscribed circle (circum)
Perpendicular bisectors of the sides are concurrent at the circumcentre	Angle bisectors of the angles are concurrent at the incentre
The sums of the two pairs of opposite angles are equal (e.g. $\angle A+\angle C=$ The sums of the two pairs of opposite $\angle B+\angle D)($ Fig 2b) sides are equal (e.g. AB $+\mathrm{CD}=\mathrm{BC}$ $+\mathrm{AD})($ Fig 2a)	

Parallelogram

Equal opposite angles	Equal opposite sides

This duality can be nicely displayed in the classification scheme in Figure 3 where reflection in the vertical line of symmetry gives the dual of a particular quadrilateral. (It is furthermore left to the reader to verify that the sums of the two pairs of opposite sides of a circum quad are equal).

Figure 3
Many beautiful theorems in geometry display this duality. One such example is the following from De Villiers (1996).

Figure 4

Theorem 1

Consider a convex circum quad as shown in Figure 4 with side lengths of $\mathrm{AB}=a, \mathrm{BC}=b, \mathrm{CD}=c$ and $\mathrm{DA}=d$. Select any point P on AB . Take Q on BC so that $\mathrm{BQ}=\mathrm{PB}, \mathrm{R}$ on CD so that $\mathrm{CR}=\mathrm{QC}$ and S on AD so that $\mathrm{DS}=\mathrm{RD}$. Then we have the surprising result that $\mathrm{AS}=\mathrm{AP}$ and PQRS is a cyclic quadrilateral. (Note that this result is a generalization of the result that the four points where the incircle touches the sides of a circum quad are concyclic).

Sketchpad is now completely free \& available to download at: http://dynamicmathematicslearning.com/free-download-sketchpad.html
Investigate this theorem dynamically with the use of Sketchpad!

1. If you do not have Sketchpad, first download a FREE DEMO of it from: | These |
| :---: |
| highlighted |
| links are |

Challenge: Can you prove this theorem?

Stuck? Or want to compare your proof?

Download the proof from:
 http://mzone.mweb.co.za/residents/profmd/amesa96a.pdf
 http://dynamicmathematicslearning.com/amesa96a.pdf
 This
 highlighted link is no longer valid.

Theorem 2

Construct any angle divider AQ of $\angle A$ of a convex cyclic quad ABCD . Now construct the angle divider BS of $\angle B$ so that $\angle P B A=\angle P A B$, the angle divider CR of $\angle C$ so that $\angle S C B=\angle S B C$ and the angle divider DQ of $\angle D$ so that $\angle R D C=\angle R C D$ (see Figure 5). Then $\angle Q D A=\angle Q A D$ and PQRS is a circum quad.

Figure 5
Investigate this theorem dynamically with the use of Sketchpad!

1. If you do not have Sketchpad, first download a FREE DEMO of it from:

These highlighted links are no longer valid.

Challenge: Can you prove this theorem?

Stuck? Or want to compare your proof?
Download the proof from:
http://mzone.mweb.co.za/residents/profmd/amesa96b.pdf

Exercise

http://dynamicmathematicslearning.com/amesa96b.pdf

This highlighted link is no longer valid.

1. Can you generalize the two dual results given in Theorems 1 and 2 to hexagons, octagons, etc?
2. Can you find analogous results related to triangles for the two dual results given in Theorems 1 and 2? If so, can you generalize?
(Hint: See http://mzone.mweb.co.za/residents/profmd/sharp.pdf)

Reference

http://dynamicmathematicslearning.com/sharp.pdf
De Villiers, M. (1996). Some Adventures in Euclidean Geometry. Durban: University of DurbanWestville.

(Ordering information: http://mzone.mweb.co.za/residents/profmd/homepage2.html)

