An associated result of the Van Aubel configuration and its generalization

Michael de Villiers

To cite this article: Michael de Villiers (2023) An associated result of the Van Aubel configuration and its generalization, International Journal of Mathematical Education in Science and Technology, 54:3, 462-472, DOI: 10.1080/0020739X.2022.2034064

To link to this article: https://doi.org/10.1080/0020739X.2022.2034064

Published online: 18 Feb 2022.

Submit your article to this journal

Article views: 180

View related articles

View Crossmark data \triangle

An associated result of the Van Aubel configuration and its generalization

Michael de Villiers
Research Unit for Mathematics Education, University of Stellenbosch, Stellenbosch, South Africa

Abstract

This note presents some novel generalizations to similar quadrilaterals, similar parallelograms, and similar triangles of a result associated with Van Aubel's theorem about squares constructed on the sides of a quadrilateral. These results provide problem posing opportunities for interesting, challenging explorations for talented students using dynamic geometry at high school or for university students.

ARTICLE HISTORY

Received 8 June 2021

KEYWORDS

Van Aubel's theorem; similarity; parallelogram; kite; triangles; cyclic quadrilaterals; proof; dynamic geometry; transformation geometry

SUBJECT CLASSIFICATION CODES
97G50; 97D40; 97D50

1. Introduction

Van Aubel's celebrated quadrilateral theorem states that if squares are constructed on the sides of any quadrilateral, then the segments connecting the centres of the squares on opposite sides are equal and perpendicular (Van Aubel, 1878). Apparently not as well-known is the interesting associated result that the respective midpoints F and G, of the diagonals $A C$ and $B D$ of $A B C D$, and the respective midpoints I and H of the segments connecting the centres of the squares on opposite sides form a square GHFI (see Figure 1).

The historical origin of this result is not known to the author who first saw the result mentioned in Tabov (1996) where it was proved in two different ways, first with complex numbers, and then also with transformation geometry. More recently, this result was mentioned \& proved in Silvester (2006, p. 10) as well as at Bogomolny (Undated).

In this classroom note, this associated result of the Van Aubel configuration is generalized by using the 'what if not' problem posing strategy proposed by Brown and Walter (1993). By starting with the familiar Van Aubel arrangement of squares, the result is generalized to other similar quadrilaterals all placed exterior or interior on the sides of a quadrilateral in two different ways. A special case of similar parallelograms on the sides is also explored before looking at further generalizations just involving similar triangles on the sides. The first case of similar quadrilaterals follows.

Figure 1. Van Aubel's configuration with formed square GHFI.

2. Similar quadrilaterals on the sides

Theorem 1: Given four points A, B, C, D, and four directly similar quadrilaterals $A P_{1} P_{2} B$, $B Q_{1} Q_{2} C, C R_{1} R_{2} D, D S_{1} S_{2} A$ with respective centroids ${ }^{1} P, Q, R$, S. Further let F, G, H, I be the midpoints of the segments $A C, B D, Q S, P R$ respectively (see Figure 2). Then GHFI is a parallelogram.

Dynamic geometry sketches illustrating Theorem 1 (and Theorems 3, 4, 5, 6 and 7 further on) are available online for the reader to explore at: http://dynamicmathematicslearning. com/van-aubel-associated-similar-quads.html.

The result is quite easy and straightforward to prove by using the following very useful special case of a general similarity theorem proved in DeTemple and Harold (1996, p. 21), and also used in De Villiers (1998, p. 408). More recently, Abel (2007) and Fried (2021) have also provided easily accessible proofs of Theorem 2 below.

Theorem 2: If the corresponding vertices of two directly similar figures are connected, then the midpoints of those 'connecting segments' form another figure, similar to the other two.

Figure 2. Parallelogram GHFI of Theorem 1.

Proof: (Theorem 1): Consider Figure 3 which just shows the quadrilateral $A B C D$ with the respective centroids P and R on the opposite sides $A B$ and $C D$, and the two respective midpoints G and F of diagonals $B D$ and $A C$. Since $\triangle B P A$ is similar to $\triangle D R C$ by construction, it immediately follows from Theorem 2 that $\triangle G I F$ is similar to both $\triangle B P A$ and $\triangle D R C$.

With reference to Figure 2, it now follows in exactly the same way that $\triangle F H G$ is similar to $\triangle A S D$ and $\triangle C Q B$. But since $\triangle A S D$ is similar to $\triangle B P A$, it follows that $\triangle G I F$ is similar to $\triangle F H G$. However, since triangles GIF and $F H G$ share the same side $G F$ and correspondingly have two angles congruent, it follows that the two triangles are congruent; hence GHFI is a parallelogram. Q.E.D.

From the similarity between $\triangle G I F$ and $\triangle B P A$ it also follows that the ratio of their corresponding sides is in the same ratio; ie. $F I / I G=A P / P B$.

Obviously when $\angle B P A=90^{\circ}$, the parallelogram $G H F I$ will become a rectangle, since from similarity, GHFI now has a right angle. Also when $P B=P A$, the parallelogram GHFI will become a rhombus, since from similarity, GHFI now has a pair of adjacent sides equal.

In the further special case ${ }^{2}$ where $\angle B P A=90^{\circ}$ and $P B=P A$, the parallelogram GHFI obviously becomes a square, since from similarity, GHFI now has a right angle and a pair of equal adjacent sides. Since this case is equivalent to the original Van Aubel arrangement with squares on the sides of $A B C D$, we will have $P R=Q S$ and $P R \perp Q S$.

Figure 3. Applying Theorem 2.

Another different arrangement of the similar quadrilaterals on the sides of $A B C D$ is possible as defined in the theorem below.

Theorem 3: Given four points A, B, C, D, and four directly similar quadrilaterals $A P_{1} P_{2} B$, $C Q_{1} Q_{2} B, C R_{1} R_{2} D, A S_{1} S_{2} D$ with respective centroids P, Q, R, S. Further let F, G, H, I be the midpoints of the segments $A C, B D, Q S, P R$ respectively (see Figure 4). Then GHFI is a kite.

From theorem 2, it follows immediately that GHFI is a kite symmetrical around GF. Q.E.D.

As in theorem 1, from the similarity between $\triangle G I F$ and $\triangle B P A$ it follows that the ratio of their corresponding sides is in the same ratio; ie. $F I / I G=A P / P B$.

In the special case ${ }^{3}$ when $\angle B P A=90^{\circ}, \angle G I F$ also becomes 90° and the kite GHFI becomes cyclic, and is called a 'right kite' (Wikipedia: Right Kite). Also note that the placement of the similar triangles $B P A, D S A, D R C$ and $B Q C$ in this special case is equivalent to the arrangement of the corresponding triangles for similar rhombi on the sides as described in De Villiers (1998) and Silvester (2006). Hence, from the results obtained in these two papers, it follows that if $\angle B P A=90^{\circ}$, then $P R=Q S$, and the angle between $P R$ and $Q S$, $\angle R X S=2 \times \angle P A B$.

From the aforementioned, it further follows that if $\angle B P A=90^{\circ}$ and $\angle P A B=45^{\circ}$, then $P R=Q S$ and $P R \perp Q S$. Since this condition implies that $\triangle B P A$ becomes an isosceles right triangle, ${ }^{4}$ it immediately follows from the similarity of $\triangle B P A$ to $\triangle G I F$, that the kite GHFI becomes a square.

Note that the arrangement in Theorem 3 of the directly similar quadrilaterals $A P_{1} P_{2} B$, $C Q_{1} Q_{2} B, C R_{1} R_{2} D, A S_{1} S_{2} D$ is different from those of the generalizations of similar rectangles and similar parallelograms discussed in De Villiers (1998) and Silvester (2006). However, if similar parallelograms (and similar rectangles) are arranged according to

Figure 4. Kite GHFI of Theorem 3.
the arrangement in these two papers, we obtain the following theorem in relation to the quadrilateral GHFI.

Theorem 4: Given four points A, B, C, D, and four directly similar parallelograms with respective centroids P, Q, R, S, arranged as shown in Figure 5. Further let F, G, H, I be the midpoints of the segments $A C, B D, Q S, P R$ respectively. Then GHFI is a cyclic quadrilateral.

Proof: As before, applying Theorem 2 to the pair of similar triangles on opposite sides $A B$ and $C D$, it follows that $\triangle G I F$ is similar to $\triangle B P A$, and therefore $\angle B P A=\angle G I F$. Applying Theorem 2 to the different pair of similar triangles on opposite sides $B C$ and $A D$, it follows that $\triangle G H F$ is similar to $\triangle B Q C$, and therefore $\angle B Q C=\angle G H F$. But $\angle B P A+\angle B Q C=180^{\circ}$ since these are two adjacent angles formed by the diagonals of the similar parallelograms. Hence, $\angle G I F+\angle G H F=180^{\circ}$, which implies that $G H F I$ is a cyclic. Q.E.D.

From the given similarities we can derive even more. For example, for the two pairs of similar triangles $\triangle G I F$ and $\triangle B P A$, and $\triangle G H F$ and $\triangle B Q C$, we correspondingly have $\angle P A B=y=\angle I F G$ and $\angle Q C B=z=\angle H F G$. But $\angle P A B+\angle Q C B=\angle P A B+\angle P A P_{1}=$ $y+z=\angle P_{1} A B$. However, using complex numbers as in Silvester (2006), vectors, or transformation geometry as shown in the Appendix, the angle between $P R$ and QS can be shown to be equal to $\angle P_{1} A B$.

Figure 5. Cyclic quadrilateral GHFI of Theorem 4.
Hence, $\angle I V H=y+z=\angle I F H$, but since these two angles are subtended by the same chord chord $I H$, it follows that the Van Aubel point V is concyclic with the other four points G, H, F and I. This result, also presented in Pellegrinetti and de Villiers (In press) with a different synthetic proof, is a nice generalization of the Pellegrinetti circle (Pellegrinetti, 2019) for the case when the similar quadrilaterals are squares.

3. Similar triangles on the sides

As can clearly be seen from the earlier examples above, the original theorem of Van Aubel, as well as its various generalizations (including those in De Villiers (1998) and Silvester (2006)), are really about similar triangles (and their apex vertices) and not really about similar quadrilaterals (and their centres/centroids ${ }^{5}$) on the sides of a quadrilateral. For example, Theorems 1,3 and 4 would hold as long as the particular sets of triangles on the sides of $A B C D$ are similar (and related to each other as required).

Working with similar triangles on the sides instead of quadrilaterals, it is now easy to see that Theorems 1 and 3 further generalize as follows to Theorem 5.

Figure 6. Generalization of Theorems 1 and 3.

Theorem 5: If a pair of directly similar triangles $B P A$ and $D R C$ are constructed on opposite sides $A B$ and $C D$ of quadrilateral $A B C D$, and another pair of directly similar triangles $A S D$ and $C Q B$ are constructed on opposite sides $A D$ and $C B$ so that $\angle A S D=\angle B P A$, and if F, G, H, I are the midpoints of the segments $A C, B D, Q S, P R$ respectively, then GHFI is a quadrilateral with a pair of equal opposite angles at vertices H and I (see Figure 6).

Proof: As before, the result follows immediately from the application of Theorem 2.

In addition, since $\angle G I F=\angle G H F$, it follows that the circumcircles of $\triangle G I F$ and $\triangle G H F$ lie symmetrically around $G F$.

Another interesting generalization of the associated Van Aubel result for squares on the sides is the following.

Theorem 6: If a pair of directly similar isosceles triangles BPA and DRC are constructed on opposite sides $A B$ and $C D$ of quadrilateral $A B C D$, and another pair of directly similar isosceles triangles ASD and CQB are constructed on opposite sides $A D$ and $C B$, and if F, G, H, I are the midpoints of the segments $A C, B D, Q S, P R$ respectively, then GHFI is a kite with HI its axis of symmetry (see Figure 7).

Proof: As before, from Theorem 2, it follows that $\triangle G I F$ and $\triangle G H F$ are both isosceles triangles (with GF as their common base). Hence, GHFI is a kite (with HI its axis of symmetry). Q.E.D.

Figure 7. Similar isosceles triangles on sides.

Figure 8. Generalization of Theorem 4.

More-over, from the similarity between triangles $P A B$ and $I F G$, and triangles $S A D$ and $H F G$, we have $\angle I F H=\angle P A B+\angle S A D$. Hence, it follows that if $\angle P A B+\angle S A D=90^{\circ}$, then GHFI becomes a 'right kite' (Wikipedia: Right Kite) and is cyclic with right angles at G and F.

We can also further generalize Theorem 4 as follows.
Theorem 7: If a pair of directly similar triangles BPA and DRC are constructed on opposite sides $A B$ and $C D$ of quadrilateral $A B C D$, and another pair of directly similar triangles $A S D$
and CQB are constructed on opposite sides $A D$ and $C B$ so that $\angle A S D=180^{\circ}-\angle B P A$, and if F, G, H, I are the midpoints of the segments $A C, B D, Q S, P R$ respectively, then GHFI is a cyclic quadrilateral (see Figure 8).

Proof: As before, the result follows immediately from the application of Theorem 2.

As with the previous theorem, it follows from the similarity of the triangles that if $\angle P A B+\angle S A D=90^{\circ}$, then right angles are formed at G and F, and $H I$ is the diameter of the cyclic quadrilateral. Also note that unlike the special case in Theorem 4, as illustrated in Figure 8, the Van Aubel point V is not necessarily concyclic with G, H, I and F.

4. Conclusion

The Van Aubel associated generalizations given in Theorems, 1, 3, 4, 5, 6 and 7 provide nice, accessible challenges to mathematically talented high school learners or for undergraduate university students to first explore with dynamic geometry, and then to prove (and explain) using Theorem 2. While providing learners and students with ready-made dynamic sketches is valuable in terms of saving time, challenging learners and students to make their own dynamic constructions of the results in this paper, can also be a very fruitful learning experience for them.

Notes

1. With the centroid of a quadrilateral is meant here, its 'centre of mass' or 'balancing point', determined by the placement of equal point masses at the four vertices of the quadrilateral. Geometrically, this 'point mass' centroid is located at the centre of the Varignon parallelogram formed by the midpoints of the sides of the quadrilateral (see Hanna \& Jahnke, 2002).
2. Note that the similar quadrilaterals need not be squares for this to occur. This can be easily checked by the reader in the provided dynamic sketch by dragging points P_{1} and P_{2}. This is because $\angle B P A=90^{\circ}$ and $P B=P A$ are not sufficient conditions to ensure that quadrilaterals $A P_{1} P_{2} B$, etc. are squares.
3. As before, note that the similar quadrilaterals need not be rhombi for this to occur, and the reader is encouraged to check this using the link to the provided dynamic sketch.
4. As before, note that the similar quadrilaterals need not be squares for this to occur, and the reader is encouraged to check this using the link to the provided dynamic sketch.
5. In fact, the same results would hold if the points P, Q, R and S are chosen to lie in the same 'relative position' in respect of each quadrilateral, where the same relative position means that the same similarity transformation that maps the one quadrilateral on to the other, also maps the corresponding points P, Q, R and S on to each other.

Disclosure statement

No potential conflict of interest was reported by the author.

References

Abel, Z. R. (2007). Mean geometry. http://zacharyabel.com/papers/Mean-Geo_A07.pdf
Bogomolny, A. (Undated). Extra feature of Van Aubel configuration. https://www.cut-the-knot. org/m/Geometry/SquaresOnSidesOfQuadri.shtml

Brown, S. I., \& Walter, M. I. (1993). Problem posing in mathematics education. In S. I. Brown, \& M. I. Walter (Eds.), Problem posing: Reflection and application (pp. 16-27). Lawrence Erlbaum Associates.
De Villiers, M. (1998). Dual generalisations of Van Aubel's theorem. The Mathematical Gazette, 82, 405-412. https://doi.org/10.2307/3619886
DeTemple, D., \& Harold, S. (1996). A round-up of square problems. Mathematics Magazine, 69(1), 15-27. https://doi.org/10.1080/0025570X.1996.11996375
Fried, M. (2021). From any two directly similar figures, produce a new one. International Journal of Geometry, 10(3), 90-94.
Hanna, G., \& Jahnke, H. N. (2002). Arguments from physics in mathematical proofs: An educational perspective. For the Learning of Mathematics, 22(3), 38-45.
Pellegrinetti, D. (2019). The six-point circle for the quadrangle. International Journal of Geometry, 2, 5-13.
Pellegrinetti, D., \& de Villiers, M. (In press). An extension of the six-point circle theorem for a generalized Van Aubel configuration. The Mathematical Gazette, 106(567). To appear in Nov. 2022.

Silvester, J. (2006). Extensions of a theorem of Van Aubel. The Mathematical Gazette, 90, 2-12. https://doi.org/10.1017/S0025557200178969
Tabov, J. (1996). Solutions to a posed problem. Mathematics \& Informatics Quarterly, 6(4), 213-214.
Van Aubel, H. (1878). Note concernant les centres des carr "es construits sur les cot "es dun polygon quelconque (French). Nouv. Corresp. Math, 4, 40-44.
Wikipedia: Right Kite. https://en.wikipedia.org/wiki/Right_kite

Appendix

The transformation proof below is adapted from Pellegrinetti and de Villiers (In press).
Theorem 8: If directly similar parallelograms $A P_{1} P_{2} B, C B Q_{1} Q_{2}, R_{2} D C R_{1}$ and $S_{1} S_{2} A D$ with respective centres P, Q, R and S are erected on the sides of $A B C D$, then the angle between $P R$ and $Q S$ is equal to $\angle P_{1} A B$, and $Q S / P R=A B / P_{2} B($ see Figure $A 1)$.

Proof: Since the parallelograms are similar, it follows that \triangle 's $A B Q_{1}$ and $P_{2} B C$ are similar since $\angle A B Q_{1}=\angle P_{2} B C$ and the corresponding sides surrounding these angles are in the same ratio (i.e. $\left.A B / B Q_{1}=P_{2} B / B C=\delta\right)$. Hence, a counter-clockwise rotation around B of $\triangle A B Q_{1}$ by $\angle A B P_{2}$ followed by a dilation from B (of $P_{2} B / A B$) maps it onto $\triangle P_{2} B C$. Therefore, the corresponding sides AQ 1 and $P_{2} C$ of these two similar triangles are inclined towards each other by $\angle A B P_{2}$, or equivalently, inclined towards each other by its supplementary angle $=180^{\circ}-\angle A B P_{2}=\angle P_{1} A B$. Moreover, from the similarity of the two triangles, we have AQ1/P2C= .

Since P, F and Q are the respective midpoints of sides $A P_{2}, A C$ and $Q_{1} C$, it follows by applying the triangle mid segment theorem to \triangle 's $A P_{2} C$ and CAQ1, that $\angle P F Q=\angle P_{1} A B$, and $F Q / F P=\delta$.

Similarly it can be shown that $\angle R F S=\angle P_{1} A B$, and $F S / F R=\delta$. Hence, \triangle 's $P F R$ and $Q F S$ are similar since $\angle P F R=\angle Q F S$ and the corresponding sides surrounding these angles are in the same ratio (i.e. $F R / P F=F S / Q F=\delta$).

A rotation around F of $\triangle P F R$ by $\angle P F Q=\angle P_{1} A B$ and a dilation from F (of $Q F / P F$) maps it onto $\triangle Q F S$. Therefore, the corresponding sides $P R$ and $Q S$ of these two similar triangles are inclined towards each other by $\angle P_{1} A B$ (which is equivalent to its supplement $180^{\circ}-\angle P_{1} A B$) and $Q S / P R=\delta=A B / P_{2} B$. This completes the proof.

Figure A1. Segment properties of Van Aubel generalization to similar parallelograms.

