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Abstract
An interesting concurrency result related to the first Fermat (isogonic)
point of a triangle was recently discovered using dynamic geometry. We
provide a computer proof and an algebraic proof as well as a dynamic
sketch to explore.

Introduction
In the 1600’s, the French mathematician, Pierre de Fermat, posed the following intriguing problem,
namely, where inside a triangle should a point be placed so that it minimizes the sum of the
distances to the vertices of an acute-angled triangle?

The first one to solve it was the Italian mathematician and scientist Evangelista Torricelli (famous,
in particular, for his invention of the barometer). He showed that if one constructed equilateral
triangles on the sides of the triangle then the required point is located at the point of concurrency
of the lines connecting the outer vertices of each equilateral triangle with the opposite vertex of
the base triangle. Hence, this point of concurrency is often called the Fermat-Torricelli point.
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Since that time many different proofs for the result has been given, and the concurrency result
has also been further generalized, and applied in different situations (e.g. see De Villiers[4]).
Free downloadable worksheets with sketches for high school learners using dynamic geometry are
available in De Villiers[5], and these provide an investigative introduction to the Fermat-Torricelli
point for use in the classroom.

Note that when one of the angles of the base triangle becomes greater than 120�, then the optimal
point for minimizing the sum of the distances to the vertices would be located at the angle greater
than 120�. However, the lines connecting the outer vertices of each equilateral triangle with the
opposite vertex of the base triangle still remain concurrent, though the point of concurrency lies
outside the base triangle. This more general point of concurrency is usually referred to as the
first ‘isogonic’ centre of a triangle (Mackay[11]). If the equilateral triangles are constructed to the
interior of the triangle, then the afore-mentioned lines are concurrent at what is called the second
‘isogonic’ centre.

The following interesting result related to the first Fermat (isogonic) point of a triangle was
recently discovered by us using Geometer’s Sketchpad1. The beauty of using dynamic geometry
is that one can experimentally very quickly verify whether a result is true before trying to find
a proof. In this case we proceeded by first constructing the (first) Fermat (isogonic) point of a
triangle and then the second Fermat (isogonic) points of each of the three triangles into which it is
divided. To our pleasant surprise, we found that the lines connecting these points to the opposite
vertices of the base triangle were concurrent. While the result was new to us personally, it is quite
likely that the result appears somewhere in some paper or book, and that it is already listed in
the online Encyclopedia of Triangle Centers (ETC). An online dynamic sketch for readers and
students to explore is available at http://dynamicmathematicslearning.com/ano
ther-concurrency-related-to-fermat.html

The Theorem
Theorem. Let D be the first Fermat (isogonic) point of 4ABC and E,F and G be the second
Fermat (isogonic) points of 4ABD,4BCD and 4CAD, respectively. Then AF,BG and CE are
concurrent (see Figure 1).

Computer proof. Despite the convincing power of dragging in dynamic geometry, we duplicated
the construction in Cinderella2. This was done to also check it there, since the software has a
built-in ‘proof-checking’ facility. As shown in Figure 1, after constructing lines AF and BG and
their intersection R, and next proceeding to construct line CE (line p in the sketch), immediately
brought up a console stating that “R” lies on “p” (thus ‘proving’ the concurrency of the three
lines). While it is not clear exactly how the software determines this concurrency, it appears from
the manual that it is based on a technique called “randomized theorem checking” (Richter-Gebert
& Kortenkamp[12] p. 48).

Presumably, the property checker of Cinderella is based on the mathematical theory described
in Davis[3] who has pointed out that an algebraic identity can be conclusively established by a

1Geometer’s Sketchpad is available for free to download from: http://dynamicmathematicslear
ning.com/free-download-sketchpad.html

2Cinderella is available for free to download from: https://www.cinderella.de/tiki-index
.php
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Figure 1: Computer proof

single numerical check by using algebraically independent transcendental numbers. Although
computers cannot actually operate with transcendental numbers, a series of experiments selecting
points at random, achieves much the same result. In other words, if experiment after experiment
with randomly selected points reaffirms the same result, the probability of the result being false
effectively becomes zero.

While this ‘computer proof’ with Cinderella provided us with further conviction of the truth of
the result, we still felt the need for a proof, mainly for two reasons: 1) the given proof provides
no explanation of why the result is true, and 2) the intellectual challenge of proving the result in a
traditional deductive manner (compare De Villiers[6]).

The concurrency result proved to be a much harder problem than what it had seemed like initially.
At first we tried using what seemed like the most natural approach, namely, the sine version of
Ceva’s theorem as well as the hexagon concurrency theorem of Anghel ([1],[2]), but were unable
to find a proof.

Finally, we succeeded in developing the following proof using coordinates.

Coordinate Proof. Place the Fermat point D of 4ABC at the centre (0,0) of the coordinate system.
Let us assume (without loss of generality) that BDADCD, with R=BD, S=AD and T =CD.
Therefore R  S  T , and 4ABC can always be rotated or reflected so that it is placed as shown
in Figure 2, with a possible permutation of A,B,C so that R  S  T .

Since \ADB = \BDC = \CDA = 120�, three concentric regular hexagons are formed as shown
in the figure, with radii R, S and T . Therefore the coordinates of the vertices of 4ABC are
A
⇣
�S
2 ,

p
3S
2

⌘
, B
⇣
�R
2 , �

p
3R

2

⌘
and C (T,0).
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Lemma. If l1 is the line through the points (a1,b1) ,(c1,d1), and l2 is the line through the points
(a2,b2) ,(c2,d2), then the x-coordinate of l1 \ l2 (assuming l1 is not parallel to l2) is given by

[(d1 �d2)a2 + c2 (b2 �d1)]a1 � [(b1 �d2)a2 � c2 (b1 �b2)]c1

(a1 � c1)(b2 �d2)+(d1 �b1)(a2 � c2)
.

The proof is left to the reader as an exercise

Figure 2: Coordinate proof

The y-coordinate can now similarly be determined by substituting the x-coordinate above into the
equation of l1 (or l2).

By repeated application of this Lemma we can determine the second Fermat points G, E, F of
respectively 4CAD, 4ABD and 4BCD. For example, G is the intersection of the line through
C (T,0) and

⇣
S
2 ,

p
3S
2

⌘
and the line through

⇣
T
2 ,

p
3T
2

⌘
and A

⇣
�S
2 ,

p
3S
2

⌘
.

This gives, after simplification, G
⇣

ST (2S�T )
2S2�2ST+2T 2 ,

p
3ST 2

2S2�2ST+2T 2

⌘
.

Similarly, we get E
⇣

�RS(R+S)
2R2�2RS+2S2 ,

p
3RS(R�S)

2R2�2RS+2S2

⌘
and F

⇣
RT (2R�T )

2R2�2RT+2T 2 ,
�
p

3RT 2

2R2�2RT+2T 2

⌘
.
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Now we determine the intersection points AF \CE, AF \BG and BG\CE by again using the
Lemma. In each of the three intersections we get the same point

P

 
RST

�
2R2S2 �T 2 �R2 +S2��

2R3S3 +2R3T 3 +2S3T 3 +2R2S2T 2 ,

p
3RST 3 �R2 �S2�

2R3S3 +2R3T 3 +2S3T 3 +2R2S2T 2

!
.

This then completes the proof of the concurrency of AF , BG and CE.

Special cases

R = S (4ABC is isosceles) �! P
⇣

(R�T )RT
R2�RT+2T 2 ,0

⌘

R = S = T (4ABC is equilateral)�! P(0,0) = D.

It should also be mentioned that the symbolic processing software, Maple, was used to assist in
the algebraic manipulation and simplification of the proof above.

While this proof undoubtedly satisfied our need for personal conviction and provided us with
intellectual satisfaction in conquering the challenging problem facing us, it unfortunately still does
not adequately explain in a simple, elegant way why the result is true. It is therefore hoped in due
course that we ourselves, or perhaps others, will succeed in finding a less brute force proof of the
concurrency result that is more explanatory.

Other Interesting Properties
The configuration has several other interesting mathematical properties, some of which are:

1. AE
EB ⇥ BF

FC ⇥ CG
GA = 1.

2. Consider Figure 3. Extend AJ to meet BI in X , and repeat the same construction on the
other two sides BC and CA of 4ABC to locate corresponding points Y and Z. Then XC, YA
and ZB are concurrent. (View this construction at the URL given earlier).

3. The circumcircles of triangles AEB, BFC and CGA are concurrent. (Similarly, the circum-
circles of triangles EBF , FCG and GAE are also concurrent).

4. The respective circumcenters of triangles AEB, BFC and CGA form an equilateral triangle.

5. \EFG = \EBA+\ACG, \EGF = \EAB+\BCF and \GEF = \GAC+\CBF .

Readers are encouraged to interactively explore these properties at the URL given earlier. While
the concurrency result is probably a little too hard and therefore not suitable in our opinion for
possible use in a mathematics competition or training program, the five properties given above
should be accessible for talented mathematics learners at different levels.
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Figure 3: Proof property 1

Proof of Property 1

Consider Figure 3 which shows the relevant points as well as the constructed equilateral triangles
ABH, BDI and DAJ for the location of the 2nd Fermat point E for 4ABD.

Since it is well-known that the green lines at each of E,F,G form 60� angles with each other,
it follows that AEJD is cyclic, since \AED = 60� = \AJD (angles subtended on chord AD).
Therefore, if we let \EAJ = x, then \EDJ = x (angles on chord EJ). Similarly, it follows that
EIBD is cyclic and that \EDJ = x = \EBI (angles on chord EI). Hence, \EBI = x = \EAJ.

It now follows that \ADE = 60� � x. But \EBD = 60� � x; therefore \ADE = \EBD.

Apply the sine rule respectively to triangles AED and EBD to obtain the following two equations:
AE

sin(ADE) =
AD

sin(60�) and ED
sin(EBD) =

BD
sin(60�) . Divide the first equation by the second and re-arrange to

obtain: AE = ED.AD
BD .

Similarly, EB = ED.BD
AD and therefore AE

EB = AD2

BD2 . In the same way can be shown that BF
FC = BD2

CD2 and
CG
GA = CD2

AD2 .

Therefore,
AE
EB

⇥ BF
FC

⇥ CG
GA

=
AD2

BD2 ⇥
BD2

CD2 ⇥
CD2

AD2 = 1.
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Note: While the property AE
EB ⇥ BF

FC ⇥ CG
GA = 1 may strongly remind one of Ceva’s theorem, it is

unfortunately not equivalent to it; in fact, Property 1 is neither necessary nor sufficient to prove
AF , BG and CE concurrent. In general, according to the hexagon concurrency theorem of Anghel
([1],[2]), to prove AF , BG and CE concurrent, we need to prove AE

EB ⇥ BF
FC ⇥ CG

GA = sin(EBC)
sin(ABF) ⇥

sin(FCA)
sin(BCG) ⇥

sin(GAB)
sin(CAE) . In other words, prove that sin(EBC)

sin(ABF) ⇥
sin(FCA)
sin(BCG) ⇥

sin(GAB)
sin(CAE) = 1, but were unable to

do so.

Proving the other four properties is left as an exercise to readers and students. Property 2 above
follows directly from the point symmetry of the formed parallelo-hexagon AXBYCZ. Property 3
about the circle concurrencies is easily proven using cyclic quadrilaterals (De Villiers[7]) and
Property 4 about the formed equilateral triangle is simply a variation of Napoleon’s theorem (De
Villiers[8]). Lastly, Property 5 follows directly from Property 1 and the application of the theorem
of Egamberganov[9].

Concluding remarks
With the availability of increasingly powerful software and artificial intelligence (AI), it is perhaps
prudent to ask why do we still need to deductively verify (prove) an experimentally discovered
result like this when a computer or AI can produce a proof. Firstly, producing a proof can often
help one to better and more deeply understand why a result is true, rather than just knowing a
result is true. Secondly, while artificial intelligence and other software have already produced some
impressive results, it is perhaps still cautionary to bear in mind an example given by Garaschuk[10]
where five logical problems were given to ChatGPT, and while it produced plausible sounding
solutions to each one, none of them were correct! Lastly, the intellectual challenge of finding a
proof for oneself is what largely appeals to mathematicians, much like solving a crossword puzzle,
conquering a mountain peak or running a marathon.

Web Supplement.
http://dynamicmathematicslearning.com/another-concurrency-relat

ed-to-fermat.html

References

[1] Anghel, N., Concurrency and Collinearity in Hexagons. Journal for Geometry and Graphics,
2016, Volume 20, No. 2, pp. 159–171.

[2] Anghel, N., Concurrency in Hexagons - a Trigonometric Tale. Journal for Geometry and
Graphics, 2018, Volume 22, No. 1, pp. 21–29.

[3] Davis, P.J., Proof, completeness, transcendentals and sampling. Journal Assoc. Comp.
Machin., 1977, 24, pp. 298-310.

[4] De Villiers, M., From the Fermat points to the De Villiers points of a triangle. In Proceedings
of the 15 Annual AMESA Congress, edited by Meyer, J.H. & Van Biljon, A., University of

39



Mathematics Competitions Vol 37 No 2 2024

Free State, Bloemfontein, 2009, pp. 1-8. https://dynamicmathematicslearning
.com/devillierspoints.pdf

[5] De Villiers, M., Guided Worksheets (free downloads): The Fermat-Torricelli point (pp. 108-
114) https://dynamicmathematicslearning.com/Fermat-Torricell
i-point.pdf and Airport Problem (pp. 115-118) https://dynamicmathematics
learning.com/Airport-Problem.pdf from Rethinking Proof with Sketchpad (free
download), Key Curriculum Press, Emeryville, 2012a. https://www.researchgate
.net/publication/375342639_Rethinking_Proof_with_Geometer%27

s_Sketchpad

[6] De Villiers, M., The Role and Function of Proof with Sketchpad. Foreword from Rethinking
Proof with Sketchpad (free download), Key Curriculum Press, Emeryville, 2012b.

[7] De Villiers, M., Some Circle Concurrency Theorems. Learning and Teaching Mathematics,
2022, No. 33, pp. 34-38

[8] De Villiers, M., A Surprise Equilateral Triangle. Learning & Teaching Mathematics, (In
Press). Dec 2024, no. 37.

[9] Egamberganov, K., A generalization of the Napoleon’s Theorem. Mathematical Reflections,
2017, no. 3, pp. 1-7.

[10] Garaschuk, K., Editorial. Crux Mathematicorum, 2023, Vol. 49, no. 1, pp. 3-4. https://
cms.math.ca/wp-content/uploads/2023/02/Wholeissue_49_1-2.pdf

[11] Mackay, J.S., Isogonic Centres of a Triangle. General Report (Association for the
Improvement of Geometrical Teaching), The Mathematical Association, 1893, Vol. 19
(January), pp. 54-60,

[12] Richter-Gebert, J. & Kortenkamp, U., The Cinderella.2 Manual. Technical University of
Munich and the Technical University of Berlin, 2011.

Michael de Villiers
University of Stellenbosch, South Africa
Dynamic Geometry Sketches:
profmd1@mweb.co.za

http://dynamic-mathematicslearning.com/JavaGSPLinks.htm

Johan Meyer
University of the Free State
Bloemfontein, South Africa
MeyerJH@ufs.ac.za

40


