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In Euclidean plane geometry there exists an interesting, although limited, duality between the

concepts angle and side, similar to the general duality between points and lines in projective

geometry. Perhaps surprisingly, this duality occurs quite frequently and is explored fairly

extensively in [2].

The square is self-dual regarding these concepts as it has all angles, as well as all sides

equal. Similarly, the rectangle and rhombus are each other's duals as shown in the table below:

Rectangle Rhombus

All angles equal All sides equal

Center equidistant from vertices, hence has

circum circle

Center equidistant from sides, hence has in

circle

Axes of symmetry bisect opposite sides Axes of symmetry bisect opposite angles

It also appears that the equal diagonals of the rectangle has as its dual the perpendicular

diagonals of the rhombus. An example is given by the following two elementary results (the

proofs of which are left to the reader):

(1) The midpoints of the sides of any quadrilateral with equal diagonals form a rhombus

(see Figure1).

(2) The midpoints of the sides of any quadrilateral with perpendicular diagonals form a

rectangle (see Figure 2).
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This paper will now provide intriguing extensions of some results in a paper by DeTemple &

Harold [1], by utilizing the above-mentioned duality between the rectangles and rhombi. The

following dual Theorems 1 and 2 are generalizations of their Problem 7 involving squares.

Theorem 1

(a) If similar rectangles ABCD and AB'C'D' share a vertex at A (where both rectangles are

labelled clockwise, then the segments BB' and DD' lie on perpendicular lines (see

Figure 3).

(b) Further, if P is the point at which BB' and DD' intersect, then the line CC' also passes

through P and the line AP is perpendicular to it.

 (c) Also, if O and O' are the respective centers of rectangles ABCD and AB'C'D', then

OO' = 
1

2
CC'.

Proof
(a) The spiral similarity (k; 90°) about point A maps ABB' onto ADD' (k = AD/AB =

AD'/AB' from the similarity of the rectangles). Therefore BB' and DD' are contained in

lines that cross at 90°.

(b) Draw the circumscribing circles of each of these rectangles. Since ∠B'PD' = 90° as

shown in (a), it follows that these circles intersect at A and P (∠B'PD' = 90° =
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∠B'AD' on diameter BD'). Since AC' is a diameter it follows that ∠APC' = 90°.

Similarly, ∠APC = 90° and therefore CPC' is a straight line.

(c) In ACC', the points O and O' are the midpoints of sides AC and AC', and therefore

OO' //= 
1

2
CC'.

Theorem 2

(a) If similar rhombi ABCD and AB'C'D' share a vertex at A (where both rhombi are

labelled clockwise), then the segments BB' and DD' are congruent (see Figure 4).

(b) If O and O' are the respective centers of rhombi ABCD and AB'C'D', then OO' =
1

2
CC'.

Figure 4

Proof
(a) A rotation of size ∠BAB' around point A maps ABB' onto ADD', showing that the

triangles are congruent, and therefore BB' = DD'.

(b) In ACC', the points O and O' are the midpoints of sides AC and AC', and therefore

OO' //= 
1

2
CC'. Also note that unlike the preceding result, CC' does not necessarily

pass through the intersection point of the lines through BB' and DD'.

The following two dual theorems are generalizations of Problem 8 in [1] involving squares.

Theorem 3

If two similar rectangles ABCD and AB'C'D' share a vertex, then the midpoints, Q and S, of

the segments B'D and BD' together with centers R and T form another similar rectangle TSRQ

(see Figure 5).
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Theorem 4

If two similar rhombi ABCD and AB'C'D' share a vertex, then the midpoints, Q and S, of the

segments B'D and BD' together with centers R and T form another similar rhombus TSRQ

(see Figure 6).

Proof

Both Theorems 3 and 4 depend on the following useful general result given and proved in [2]:

"Let F0  and  F1 denote two directly similar figures in the plane, where P F1 1∈  corresponds to

P F0 0∈  under the given similarity. Let r ∈( , )0 1 , and define F r P rPr = − +{( ) }1 0 1 . Then Fr  is

also directly similar to F0 ."

An example of the theorem is illustrated in Figure 7 where the figures are quadrilaterals and
r = 1

2 . In the case of Theorems 3 and 4, we also have r = 1
2 , but F0  and F1  share a common

vertex.

The following two dual Theorems 5 and 6 are generalizations of Van Aubel's theorem

presented as Problem 15 in [1].

Figure 6Figure 5
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Figure 8

Theorem 5

If similar rectangles with centers E, F, G and H are erected externally on the sides of

quadrilateral ABCD as shown in Figure 8, then the segments EG and FH lie on perpendicular

lines. Further, if J, K, L and M are the midpoints of the dashed segments shown, then JL and

KM are congruent segments, concurrent with the other two lines.

Proof

The configurations in Theorems 1 and 3 provide the keys to a proof. By Theorem 3, the

similar rectangles with diagonals EF and GH have a common vertex at the midpoint of AC (see

Figure 9). Similarly, the similar rectangles with diagonals FG and EH have a common vertex at

the midpoint of BD. Theorem 1 shows that EG and FH lie on perpendicular lines and that

KM and JL are concurrent with EG and FH.

By erecting similar rhombi as shown by the dotted lines on the sides of quadrilateral

EFGH as shown, we obtain the same configuration as in Theorem 6, from which follows that

KM and JL are congruent.

From Theorem 1, also note that EG is twice the breadth of similar rectangle PQRS, and

FH is twice its length. Similarly, the common length of KM and JL is twice the length of a

diagonal of rectangle PQRS.
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Another interesting observation is that FH and EG are angle bisectors of the angles formed by

the other two lines. By drawing the circumcircles of rectangles with diagonals EF and FG, it

follows that O lies on both circles. Therefore, ∠FOL = ∠FGL (on chord FL) and ∠FOK =

∠FEK (on chord FK). But since FGL is similar to FEK, it follows that ∠FOL = ∠FOK.

Thus, FH is the angle bisector of ∠KOL, and similarly EG is the angle bisector of ∠KOJ.

Theorem 6

If similar rhombi with centers E, F, G and H are erected externally on the sides of quadrilateral

ABCD as shown in Figure 10, then the segments EG and FH are congruent. Further, if J, K, L
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and M are the midpoints of the dashed segments shown, then JL and KM lie on perpendicular

lines.

Proof

The configurations in Theorems 2 and 4 provide the keys to a proof. By Theorem 4, the

similar rhombi with diagonals EF and GH have a common vertex at the midpoint of AC (see

Figure 11). Similarly, the similar rhombi with diagonals FG and EH have a common vertex at

the midpoint of BD. Theorem 2 shows that EG and FH are congruent.

By erecting similar rectangles as shown by the dotted lines on the sides of quadrilateral

EFGH as shown, we obtain the same configuration as in Theorem 5, from which follows that

KM and JL lie on perpendicular lines.

From Theorem 2, also note that the common length of EG and FH is twice the length

of a side of similar rhombus PQRS. Similarly, KM is twice the length of diagonal QS and JL is

twice the length of diagonal PR.

Remark

Different transformation and vector proofs for the respective orthogonality and congruency of

segments EG and FH in Theorems 5 and 6 are given in [2] and [3]. The extension of these two

results to include segments JL and KM using the approach of [1], seems to be new.
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These dual generalizations are particularly appealing, since the special cases with squares are

easily obtained from them. For example, just as the squares are the intersection of the

rectangles and rhombi, we obtain Van Aubel's theorem by combining Theorems 5 and 6. (I.e.

for squares it gives us segments JL and KM, and EG and FH, respectively congruent and lying

on perpendicular lines, as well as concurrent in a single point. In addition, it also follows that

all eight angles at the point of intersection are equal.)

Note: Zipped Sketchpad 3 sketches related to this article and some further generalizations of

Van Aubel can be downloaded from http://mzone.mweb.co.za/residents/profmd/aubel.zip

REFERENCES

1. D. DeTemple & S. Harold, A Round-Up of Square Problems. Mathematics Magazine,

16:1 (1996), 15-27.

2. M. de Villiers, Some Adventures in Euclidean Geometry, University of Durban-

Westville: Durban, South Africa, 1996.

3. M. de Villiers, The Role of Proof in Investigative, Computer-based Geometry: Some

Personal Reflections, To appear in: D. Schattschneider & J. King (Eds.), Geometry

Turned On!, Joint AMS/MAA Meeting (San Francisco, 1995), MAA.

B

A
D

C

E

G

K

M

F

H

J

L

Q

S

R

P

Figure 11

http://mzone.mweb.co.za/residents/profmd/aubel.zip

