A Dual to a BMO Problem ${ }^{1}$

Michael de Villiers, Mathematics Education, University Durban-Westville, South Africa profmd@mweb.co.za

http://mysite.mweb.co.za/residents/profmd/homepage.html

In the 1999 Round 2 of the British Mathematical Olympiad (BMO) the following interesting problem was posed (see [4] for a proof]:
"Let $A B C D E F$ be a hexagon which circumscribes a circle S. The circle S touches $A B$, $C D, E F$ at their midpoints P, Q, R respectively. Let X, Y, Z be the points of contact of S with $B C, D E, F A$ respectively. Prove that $P Y, Q Z, R X$ are concurrent."

Figure 1

This result can be reformulated differently in the following equivalent form: "If the perpendicular bisectors of the alternate sides of a hexagon circumscribed around a circle are concurrent at the center of the circle, then the lines connecting opposite tangential points are concurrent (see Figure 1)." From a side-angle duality in plane geometry which is explored fairly extensively in [1], as well as used in [2] and [3] to

[^0]discover new generalizations of Van Aubel's theorem, I then immediately conjectured the follow dual:
"If the angle bisectors of the alternate angles of a hexagon inscribed in a circle are concurrent at the center of the circle, then the lines connecting opposite vertices are concurrent."

Figure 2

This dual can very easily be proved as follows (in a manner similar to that of the original result). Suppose hexagon $A B C D E F$ is given with the angle bisectors of alternate angles A, C and E concurrent at S (see Figure 2). Triangles $A B S$ and $A F S$ are congruent (Angle $S A F=$ angle $S F A=$ angle $S A B=$ angle $S B A$ since $A S$ is an angle bisector and $S A=S F=S B$). Therefore, $A B=A F$ which implies that the angles inscribed on these two chords are also equal; i.e. angle $A D B=$ angle $A D F$. Thus, $D A$ is an angle bisector of angle $B D F$ in triangle $B D F$. In the same way can be shown that $B E$ and $F C$ are angle bisectors of the other two angles in triangle $B D F$, and completes the proof since the angle bisectors of any triangle are concurrent.

The duality between the two results extends somewhat further. From the proof above, it follows that the cyclic hexagon has three pairs of adjacent sides equal (adjacent to angles A, C, and E). Similarly, it is easy to prove in the first result, that the circum hexagon has three pairs of adjacent angles equal (adjacent to sides $A B$,
$C D$, and $E F$). Although the concurrency result unfortunately does not generalize, the latter observation easily generalizes to the following two duals:
"If the perpendicular bisectors of the alternate sides of a circum $2 n$-gon ($n>1$) are concurrent at the center of the incircle, then it has n distinct pairs of equal adjacent angles."
"If the angle bisectors of the alternate angles of a cyclic $2 n$-gon ($n>1$) are concurrent at the center of the circumcircle, then it has n distinct pairs of equal adjacent sides."

Interestingly, the first generalization above in the case of a quadrilateral, becomes an isosceles trapezium, and is therefore both circumscribed and cyclic (called an isosceles circum trapezium in [1]). Similarly, the dual generalization becomes a kite, and is therefore both cyclic and circumscribed (called a right kite in [1]). Note also that the former has a line of symmetry through a pair of opposite sides, whereas the latter has a line of symmetry through a pair of opposite angles.

Although this side-angle duality is limited, it is nevertheless a useful conceptual tool for constructing new conjectures, and hopefully some new results.

REFERENCES

1. M. de Villiers, Some Adventures in Euclidean Geometry. University of Durban-Westville: Durban, South Africa, 1996.
2. M. de Villiers, Dual generalizations of Van Aubel's theorem, The Mathematical Gazette, (November 1998), 405-412.
3. M. de Villiers, More on dual Van Aubel generalizations, The Mathematical Gazette, (March 2000), 121-122.
4. The UK Mathematics Trust Yearbook, 1998-1999, 92-94.

[^0]: ${ }^{1}$ An accompanying Sketchpad sketch of this article illustrating the results can be directly downloaded in zipped form from http://mysite.mweb.co.za/residents/profmd/bmo.zip

