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INTRODUCTION 

Generalisation is one of the most important processes in mathematics, and features whenever we make a 
leap from observing a particular pattern while exploring specific cases to formulating a general conjecture 
covering all cases. While this sort of inductive generalisation is probably the most common form of 
generalisation in mathematics, there is also another type which I would like to call a ‘deductive’ or ‘reflective’ 
generalisation. This usually happens when we generalise from a particular infinite class of cases to a larger 
infinite class which includes the former. So for example, we can extend and generalise the arithmetic of 
positive whole numbers to include negative numbers, and from there go further to include the rational and 
irrational numbers, then to all the real numbers, and eventually the complex numbers. This sort of 
generalisation is no longer based on inductive generalisation, but on maintaining the same structural integrity.   

In contrast, in geometry, we tend to remain fixated on only studying triangles and quadrilaterals without 
exploring the possible further generalisation of observations to other polygons. This unfortunate practice 
often leads to learners and students having very limited intuitions and understanding of geometry and proof. 
For example, I have regularly found my student teachers, knowing that opposite sides parallel for a 
quadrilateral ensures that the quadrilateral then also has opposite sides equal, often over-generalise when 
they are asked about a hexagon with opposite sides parallel, with them erroneously believing that in such a 
hexagon the opposite sides will necessarily also be equal. 

The example presented in this paper provides an interesting, accessible geometry problem posed by Bradley 
(2004) that generalises to higher polygons. This ‘deductive’ generalisation is made possible by the proof 
which immediately shows that the same argument applies to other polygons, and provides yet another 
example of what has been called the ‘discovery’ function of proof (De Villiers, 1990).    

BRADLEY’S THEOREM 

The following result is from Bradley (2004) where it was stated without proof, and was left to the reader to 
prove: If 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 is a tangential quadrilateral as shown in Figure 1 with its sides 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐷𝐷 and 𝐷𝐷𝐴𝐴 
respectively touching its incircle at 𝐾𝐾, 𝐿𝐿, 𝑀𝑀 and 𝑁𝑁, then the respective incentres 𝑃𝑃, 𝑄𝑄, 𝑅𝑅 and 𝑆𝑆 of triangles 
𝐴𝐴𝐾𝐾𝑁𝑁, 𝐴𝐴𝐿𝐿𝐾𝐾, 𝐴𝐴𝑀𝑀𝐿𝐿 and 𝐷𝐷𝑁𝑁𝑀𝑀 lie on its incircle (and obviously form a cyclic quadrilateral). In addition, 
∠𝑃𝑃𝑄𝑄𝑅𝑅 = (∠𝑁𝑁𝐾𝐾𝐿𝐿 + ∠𝐾𝐾𝐿𝐿𝑀𝑀)/2 etc. 

A dynamic geometry sketch to explore the theorem is provided for the reader at:  
http://dynamicmathematicslearning.com/concyclic-incentres-bradley.html 

Before continuing further, readers are challenged to prove Bradley’s theorem for themselves. 
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FIGURE 1 

PROOF 

We will first prove that the respective incentres 𝑃𝑃, 𝑄𝑄, 𝑅𝑅 and 𝑆𝑆 of triangles 𝐴𝐴𝐾𝐾𝑁𝑁, 𝐴𝐴𝐿𝐿𝐾𝐾, 𝐴𝐴𝑀𝑀𝐿𝐿 and 𝐷𝐷𝑁𝑁𝑀𝑀 lie 
on the incircle of 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷. Consider Figure 2 which shows incentre 𝑄𝑄, deliberately drawn not to lie on the 
incircle, so as not to inadvertently assume what we have to prove.  
 

 

FIGURE 2 
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Clearly 𝐾𝐾𝐴𝐴𝐿𝐿𝑂𝑂 is a kite since 𝐴𝐴𝐾𝐾 and 𝐴𝐴𝐿𝐿 are equal tangents and 𝑂𝑂𝐾𝐾 and 𝑂𝑂𝐿𝐿 are equal radii. Since 𝑄𝑄 is the 
incentre of ∆𝐴𝐴𝐿𝐿𝐾𝐾 it must lie on the angle bisector of ∠𝐾𝐾𝐴𝐴𝐿𝐿 which is the axis of symmetry 𝐴𝐴𝑂𝑂 of the kite. 
Let ∠𝐾𝐾𝑂𝑂𝐴𝐴 = 𝑥𝑥. Then ∠𝐾𝐾𝐴𝐴𝑂𝑂 = 90° − 𝑥𝑥 since 𝐾𝐾𝐴𝐴 is a tangent at 𝐾𝐾 to the circle. Since the diagonals of a 
kite are perpendicular to one another, it follows that ∠𝐴𝐴𝐾𝐾𝐿𝐿 = 180° − (90° + 90° − 𝑥𝑥) = 𝑥𝑥. Since 𝐾𝐾𝑄𝑄 is 

the angle bisector of ∠𝐴𝐴𝐾𝐾𝐿𝐿, it next follows that ∠𝐴𝐴𝐾𝐾𝑄𝑄 = 1
2
𝑥𝑥 and therefore ∠𝑂𝑂𝐾𝐾𝑄𝑄 = ∠𝑂𝑂𝐾𝐾𝐴𝐴 − ∠𝐴𝐴𝐾𝐾𝑄𝑄 =

90° − 1
2
𝑥𝑥. But ∠𝑂𝑂𝑄𝑄𝐾𝐾 = 90° − 𝑥𝑥 + 1

2
𝑥𝑥 = 90° − 1

2
𝑥𝑥 (exterior angle of ∆𝐾𝐾𝐴𝐴𝑄𝑄). Hence, ∠𝑂𝑂𝐾𝐾𝑄𝑄 = ∠𝑂𝑂𝑄𝑄𝐾𝐾, 

which implies that 𝑂𝑂𝐾𝐾 = 𝑂𝑂𝑄𝑄, and therefore the point 𝑄𝑄 must lie on the incircle. Similarly, using exactly the 
same argument, we can show that the other incentres 𝑃𝑃, 𝑅𝑅 and 𝑆𝑆 also lie on the incircle. 

Let us now prove that ∠𝑃𝑃𝑄𝑄𝑅𝑅 = (∠𝑁𝑁𝐾𝐾𝐿𝐿 + ∠𝐾𝐾𝐿𝐿𝑀𝑀)/2. Consider Figure 3. If we let ∠𝑄𝑄𝑃𝑃𝑅𝑅 = 𝑥𝑥 and 
∠𝑄𝑄𝑅𝑅𝑃𝑃 = 𝑦𝑦, then ∠𝑄𝑄𝑂𝑂𝑅𝑅 = 2𝑥𝑥 and ∠𝑄𝑄𝑂𝑂𝑃𝑃 = 2𝑦𝑦 (angle at centre is twice the angle on circumference). Since 
𝐾𝐾𝐾𝐾𝑂𝑂𝐾𝐾 has a pair of opposite right angles at 𝐾𝐾 and 𝐾𝐾, it is cyclic. Hence, ∠𝑁𝑁𝐾𝐾𝐿𝐿 = 180° − 2𝑦𝑦. Similarly, we 
can show that ∠𝐾𝐾𝐿𝐿𝑀𝑀 = 180° − 2𝑥𝑥. Therefore (∠𝑁𝑁𝐾𝐾𝐿𝐿 + ∠𝐾𝐾𝐿𝐿𝑀𝑀)/2 = 180° − 𝑥𝑥 − 𝑦𝑦. But ∠𝑃𝑃𝑄𝑄𝑅𝑅 =
180° − 𝑥𝑥 − 𝑦𝑦 (angle sum in triangle ∆𝑃𝑃𝑄𝑄𝑅𝑅), which completes the proof. We can use the same argument to 
similarly show that ∠𝑄𝑄𝑅𝑅𝑆𝑆 = (∠𝐾𝐾𝐿𝐿𝑀𝑀 + ∠𝐿𝐿𝑀𝑀𝑁𝑁)/2, etc. 

 

FIGURE 3 
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AN ANALOGOUS RESULT WITH CIRCUMCENTRES 

Interestingly, we can formulate an analogous result with the circumcentres of isosceles triangles formed by 
a cyclic quadrilateral as follows: If 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 is a cyclic quadrilateral as shown in Figure 4, then the respective 
circumcentres 𝑃𝑃, 𝑄𝑄, 𝑅𝑅 and 𝑆𝑆 of triangles 𝐴𝐴𝑂𝑂𝐴𝐴, 𝐴𝐴𝑂𝑂𝐴𝐴, 𝐴𝐴𝑂𝑂𝐷𝐷 and 𝐷𝐷𝑂𝑂𝐴𝐴 form a tangential quadrilateral. In 
addition, ∠𝑆𝑆𝑃𝑃𝑄𝑄 = ∠𝐷𝐷𝐴𝐴𝐴𝐴 + ∠𝐴𝐴𝐴𝐴𝐴𝐴 − (∠𝑃𝑃𝑆𝑆𝑅𝑅 + ∠𝑃𝑃𝑄𝑄𝑅𝑅)/2, etc.  

A dynamic version illustrating the result is also available at the URL given earlier. 
 

 

FIGURE 4 

 
PROOF 

We shall first prove that 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 is a tangential quadrilateral. We will do this by proving that its angle bisectors 
are concurrent at 𝑂𝑂 (see De Villiers, 2020). Since 𝑃𝑃 is the circumcentre of ∆𝐴𝐴𝑂𝑂𝐴𝐴, we have 𝑃𝑃𝐴𝐴 = 𝑃𝑃𝑂𝑂. 
Similarly, 𝑆𝑆𝐴𝐴 = 𝑆𝑆𝑂𝑂. Hence, 𝐴𝐴𝑃𝑃𝑂𝑂𝑆𝑆 is a kite and ∠𝑃𝑃𝑁𝑁𝑂𝑂 = 90°. In the same way, it follows that 𝑃𝑃𝐴𝐴𝑄𝑄𝑂𝑂 is a 
kite and ∠𝑃𝑃𝐾𝐾𝑂𝑂 = 90°. Further note that 𝐴𝐴𝑃𝑃𝐴𝐴𝑂𝑂 is also a kite, hence ∠𝑁𝑁𝑂𝑂𝑃𝑃 = ∠𝐾𝐾𝑂𝑂𝑃𝑃. Therefore, ∆𝑃𝑃𝑁𝑁𝑂𝑂 ≡
∆𝑃𝑃𝐾𝐾𝑂𝑂 (AAS), and hence 𝑃𝑃𝑂𝑂 is the angle bisector of ∠𝑁𝑁𝑃𝑃𝐾𝐾. Similarly, we can show that 𝑄𝑄𝑂𝑂, 𝑅𝑅𝑂𝑂 and 𝑆𝑆𝑂𝑂 
are the respective angle bisectors of ∠𝑃𝑃𝑄𝑄𝑅𝑅, ∠𝑄𝑄𝑅𝑅𝑆𝑆 and ∠𝑅𝑅𝑆𝑆𝑃𝑃, and this completes the proof that 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 is 
a tangential quadrilateral. 
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Next we prove ∠𝑆𝑆𝑃𝑃𝑄𝑄 = ∠𝐷𝐷𝐴𝐴𝐴𝐴 + ∠𝐴𝐴𝐴𝐴𝐴𝐴 − (∠𝑃𝑃𝑆𝑆𝑅𝑅 + ∠𝑃𝑃𝑄𝑄𝑅𝑅)/2. Consider Figure 5. Since 𝐴𝐴𝐴𝐴𝑂𝑂𝐴𝐴 has a 
pair of opposite right angles it is a cyclic quadrilateral. We thus have ∠𝑃𝑃𝑂𝑂𝑆𝑆 = 180° − ∠𝐷𝐷𝐴𝐴𝐴𝐴. If we let 
∠𝑃𝑃𝑆𝑆𝑂𝑂 = 𝑥𝑥, then from the sum of the angles in triangle 𝑃𝑃𝑂𝑂𝑆𝑆 it follows that ∠𝑆𝑆𝑃𝑃𝑂𝑂 = ∠𝐷𝐷𝐴𝐴𝐴𝐴 − 𝑥𝑥. Similarly, 
∠𝑃𝑃𝑂𝑂𝑄𝑄 = 180° − ∠𝐴𝐴𝐴𝐴𝐴𝐴, and if we let ∠𝑃𝑃𝑄𝑄𝑂𝑂 = 𝑦𝑦 then ∠𝑂𝑂𝑃𝑃𝑄𝑄 = ∠𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑦𝑦. Therefore, ∠𝑆𝑆𝑃𝑃𝑄𝑄 =
∠𝐷𝐷𝐴𝐴𝐴𝐴 + ∠𝐴𝐴𝐴𝐴𝐴𝐴 − (𝑥𝑥 + 𝑦𝑦). But (𝑥𝑥 + 𝑦𝑦) = (∠𝑃𝑃𝑆𝑆𝑅𝑅 + ∠𝑃𝑃𝑄𝑄𝑅𝑅)/2, and therefore completes the proof. 
 

 

FIGURE 5 

LOOKING BACK & GENERALISING 

Polya (1945) mentions in his 4th and final step of problem solving that much can be gained by looking back 
and carefully reflecting on one’s proofs. Looking back carefully at the proofs of both Bradley’s theorem and 
its analogue, it should be easy to see that the proofs do not depend on the number of vertices of the starting 
polygon. Hence, they respectively generalise to tangential polygons and cyclic polygons since exactly the 
same proofs would apply.  

Dynamic sketches for a tangential pentagon as well as for a cyclic pentagon are available at the URL given 
at the start, but both cases are illustrated in Figure 6. 
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FIGURE 6 

Note that both results as stated above, and their generalisations, only remain valid if both 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 and 𝑃𝑃𝑄𝑄𝑅𝑅𝑆𝑆 
remain convex. It is possible to extend both results further to include concave and crossed cases, but this 
becomes tricky, and requires careful use of directed angles, directed triangles, etc.  
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