
counterexamples by the instructor or students can also deepen understanding, help
combat resistant misconceptions, and potentially enhance generic critical thinking.

In the next section, we will briefly examine the use of scientific principles and
results within mathematics. In particular, we will focus on the value and use of
balancing points (centroids) in the discovery and explaining of some geometric
theorems.

6 Using Scientific Principles in Mathematics

The implementation of the principles of physics has since ancient times been a
productive approach in many areas of mathematics for not only discovering new
results, but also logically explaining (proving) them. Introducing principles of
physics into a mathematical theory amounts to adding new axioms/hypotheses to
the set of axioms so far accepted. Of course, when a new result is found and proved
by such additional principles it still remains an important question to investigate
whether it can also be proved in the established axiomatic domain of mathematics
proper.

In the following, we restrict ourselves to the application of principles of statics to
geometry since these seem to provide the only examples accessible to school
teaching.

One of the most famous mathematicians and scientists of antiquity was undoubt-
edly Archimedes (c.287 – c.212 BC) of Syracuse.

Archimedes used the centroids (centres of gravity) of figures, and the law of the
lever, to deduce the volumes of spheres, cones, and pyramids (Heath 1897; Polya
1954; Hawking 2006). Another important figure was the Italian engineer Giovanni
Ceva (1647–1734 AD) who in 1678 published a book “De lineis rectis se invicem
secantibus statica constructio” exposing a comprehensive approach to elementary
geometry by means of static considerations.

The law of the lever can be stated as follows: “Magnitudes are in equilibrium at
distances reciprocally proportional to their weights” and is illustrated in Fig. 8.
Algebraically, when in balance (equilibrium), it can be formulated as W1 ! L1 ¼
W2 ! L2, whereWi and Li are, respectively, the weights and distances to the fulcrum.
In practice, it is a familiar occurrence to children playing on a seesaw where, for
example, a heavy adult would need to be balanced by two or more smaller kids on
the other side.

Over the years, the authors have used the experimental and theoretical exploration
of balancing points (centroids/centres of gravity) of triangles, quadrilaterals, and
other polygons with undergraduate and postgraduate students as well as in

Fig. 8 Law of the balanced
lever
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workshops with in-service teachers. The balancing point of a two- or three-
dimensional object is called its centre of gravity. In architecture and engineering,
accurately locating balancing points is extremely important for designing stable
structures that do not collapse (Gordon 1978). The centre of gravity of a
two-dimensional object can easily be found through experimentation. For example,
in order to locate the approximate centre of gravity of the polygon, students can be
asked to balance a cardboard polygon on the tip of a pencil or an eraser.

Another way of experimentally locating the centre of gravity of a cardboard
polygon is shown in Fig. 9. The polygon is hanging on a string that is attached
near its edge. The string is acting as a carpenter’s plumb line, which provides the
carpenter with a line perpendicular to the ground. The balancing point or centre of
gravity is then located where these two lines cross. When doing experiments like
these to locate centres of gravity, the results are obviously subject to some experi-
mental error.

After dealing with the following theoretical method of finding the centroid of a
cardboard (lamina4) quadrilateral ABCD (see Fig. 10), students can be encouraged to
carry out the geometric construction on their physical models, and to compare the
experimental finding with the theoretical location:

Fig. 9 Finding a centre of gravity with a plumb line

4In physics, a lamina is a two-dimensional object with uniform density and negligible thickness.
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1) Find G1 and G2, the respective centroids of triangles ABC and ACD, then the
balancing point of the whole quadrilateral must lie somewhere on the line
connecting these two centroids.

2) Find G3 and G4, the respective centroids of triangles ABD and BCD, then the
balancing point of the whole quadrilateral must lie somewhere on the line
connecting these two centroids.

3) Hence, the balancing point of ABCDmust lie at the intersection of the two lines in
1) and 2).

Generally, the results of comparing the experimentally found balancing point and
the theoretical location agree fairly well, unless of course major experimental or
construction errors were made. Of some pedagogical interest too is to have students
drag a dynamic quadrilateral with its constructed lamina centroid so that it becomes
concave. Much to their surprise, and some cases even with some mild bewilderment,
students will find that the balancing point could actually move outside of the
quadrilateral as shown in Fig. 11. In order to balance a concave cardboard quadri-
lateral like that, one would have to attach a thin (comparatively weightless) wire to
the centroid in order to balance it. While the balancing point moving outside of a
figure is not something uncommon – for example, the rim of a wheel also has its
centroid “outside” the rim, which is why it needs to be connected with spokes to its
balancing point, i.e., the centre of the circle forming the rim – students nonetheless
find this quite a surprising revelation.

From a sporting perspective this observation also provides a scientific explanation
why the so-called Fosbury flop is so much more efficient for high jumping than the
old-fashioned straddle technique. By bending their bodies in an arc as shown in
Fig. 12, high jumpers are able to move their centres of gravity slightly outside their

Fig. 10 Finding the centroid
of a cardboard quadrilateral
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body as they go over the cross bar, hence saving a few centimeters, which could be
the difference between winning or not.

One can also demonstrate the theoretical solution for finding the balancing point
of a cardboard quadrilateral quite nicely in another way with dynamic geometry.
Since the relative weights of the cardboard triangles ABD and BCD are determined
by their areas, we can determine the relative weights, respectively, concentrated at
the centroids G3 and G4 by measuring the areas of triangles ABD and BCD as shown
in Fig. 13. Now using the lever law of Archimedes, we can easily determine the
balancing point (centroid) of the weights atG3 andG4. In particular, dilatingG3 from
G4 as centre and a scale factor of areaABD

areaABDþareaBCDð Þ gives us the required balancing

point G0
3. And doing this construction on the same sketch as the earlier one in Fig. 10

will show students that it is the same balancing point G as before.

Fig. 12 Fosbury flop in high
jumping

Fig. 11 Balancing point
outside concave quadrilateral
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Saving the theoretical construction of the balancing point of a cardboard quadri-
lateral centroid as a tool in dynamic geometry also enables us to easily find the
balancing point of a cardboard pentagon by dividing it in two different ways into a
quadrilateral and a triangle, drawing the two lines between the respective centroids
and finding their intersection. Alternatively, one can again use the law of the lever on
a division of a pentagon into a quadrilateral and a triangle and determining their
respective centroids and areas. This approach is easily extended to hexagons, etc.

A different physical way of analyzing balancing points (centroids) of polygons is
to imagine equal point masses located at the vertices, and connected with thin wire of
negligible weight to make it a stable structure. Where would such a structure
balance? In the case of the triangle, the point mass balancing point is the same as
that of the cardboard triangle, lying at the point of concurrency of the medians, but
except for a parallelogram, it is not generally the case for a quadrilateral that the
point mass centroid coincides with its lamina (cardboard) centroid.

As demonstrated by the French mathematician Pierre Varignon (1654–1722), the
point mass centroid of a quadrilateral with equal weights at the vertices is located at
the centre of the Varignon parallelogram formed by the midpoints of the sides (e.g.,
Hanna and Jahnke 2002). As shown in the first figure in Fig. 14, the point mass
centroid does not coincide with the lamina centroid. The second figure in Fig. 14 also
shows another interesting geometric property that is easy to explain (prove) using
arguments from physics. For example, given equal point masses at the vertices of
ABCD it follows that the two weights at A and C would balance at the midpoint K of
the diagonal AC. Since the same applies to the two weights at B and D, balancing at
the midpoint L of the diagonal BD, it follows that altogether as a system, the four
weights would balance at the midpoint of KL, which implies that it coincides with
the point mass centroid (the Varignon centre of the Varigon parallelogram).

Similarly, by considering different weights at the vertices of a triangle, just like
Giovanni Ceva did (see above), we can also deduce, from the principles of mechan-
ics, the celebrated concurrency theorem of Ceva (compare Hanna and Jahnke 2002).

Fig. 13 Using areas as measure of cardboard weight
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Lastly, it is not hard to design a dynamic geometry exploration for students, and a
guided worksheet to prove from coordinate geometry, that the coordinates of the
centroid of a triangle can be found from the average of the coordinates of its vertices.
This can be further extended by using a weighted average to find the coordinates for
the Ceva point for different point mass weights located at the vertices, and easily
extended further to higher polygons.

For a short outlook on other ways of using means from physics to understand
mathematical relations, we hint at applying physical models and phenomena to
illustrate mathematical problems and theorems. This can potentially contribute to
making mathematics more meaningful to a lot of students that are not destined to
further pursue “pure” mathematics. The Fermat point of a scalene triangle, i.e., the
point that minimizes the sum of the distances to the vertices can easily be modeled by
weights hanging in balance as shown in Fig. 15. Soap bubble geometry can also be

Fig. 14 Point mass centroid and lamina centroid

Fig. 15 Mechanical
demonstration of Fermat point
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used in class and workshops with teachers to quite dramatically illustrate the Fermat
point of a scalene triangle, and as shown in Fig. 16, the similar Steiner shortest path
network for a square.

7 Modelling the Real World

The inclusion of mathematical modelling as part of the mathematics curricula of
many countries provides an excellent opportunity to include more experimentation
into the classroom. As explained in Sect. 2, this is an important step beyond the
Lakatosian point of view since, with modelling, experimenting with different
hypotheses also comes into play.

There exist quite a lot of diagrammatic representations of the circular process of
modelling (f. e. Blomhøj and Jensen 2003, p. 125; Kaiser and Stender 2013, p. 279).
We use a very simplified diagram which consists of three important steps or stages as
illustrated in Fig. 17, namely,

1) Construction of the mathematical model
2) Processing the model
3) Interpretation and evaluation of the results

Out of a practical problem, a mathematical model is constructed comprising a set
of data and a set of hypotheses. The latter can be a geometric representation, a
number of algebraic formulae or functions or differential equations, respectively, or a
mixture of them. In the next step, the mathematical model is processed. This might
mean different activities: to insert data into the equations, to manipulate formulae,

Fig. 16 Soap bubble
demonstration of Steiner tree
network for a square
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