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Thomas W. Shilgalis and Carol T. Benson

Centroid of a Polygon—Three Views

hen they investigate medians of a triangle, geometry
students are often challenged to balance a card-
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board model on the tip of a pencil. Of course, they
find that the eraser end works much better than the
tip. The point of balance for the cardboard model is
referred to in physics as the center of mass, the
point at which the entire mass of the model appears
to be concentrated. Having experienced the center-
of-mass concept physically in this type of exercise,
students may be ready for a mathematical look. We
present a possible excursion here.

Before we get into the details, let us distinguish
among some terms. First, what is a polygon? We
like the following definitions:

Definition: “A polygon is the union of three or
more segments in the same plane such that each
segment intersects exactly two others, one at
each of its endpoints” (Coxford 1993, p. 92). The
segments are the sides and the endpoints of the
segments are the vertices.

Definition: “The union of a polygon and its interior
is a polygonal region” (Coxford 1993, p. 94).

Figure 1 shows some polygon-related sets, with
the vertices subscripted consecutively for later con-
venience. Figure 1a shows a convex quadrilateral.
Figure 1b shows a nonconvex pentagon. Figure
1c shows the polygonal region corresponding to the
polygon in figure 1a. Figure 1d shows only the
vertex set for the polygon in figure 1b.

When we investigate the idea of the center of
mass of a polygon, we must distinguish among a
polygon, which is modeled by a wire frame, as in
figures 1a and 1b; a polygon’s vertex set, modeled
by a set of dots, as in figure 1d; and a polygonal
region, modeled by a piece of sheet metal or card-
board, as in figure 1c. We look first at polygonal
regions, since one thinks of these regions when the
phrase “centroid of a polygon” arises.

Proving that the medians of a triangle meet in a
point, commonly referred to as the centroid of the
triangle, is standard fare in geometry classes. That
this point is also the center of mass of the corre-
sponding triangular region of uniform mass density
is usually left to the intuitive balancing act men-
tioned previously. The purpose of this article, in the
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Fig. 1
Polygon-related sets

spirit of exploration and generalization, is to move
to the question, What would we mean by the center
of mass, to be referred to as a centroid here, of a
polygonal region with more than three sides? And if
we can accept its existence, what can we say about
its location? Thinking of the cardboard-triangle
demonstration, students might naturally want to
try another balancing act. This approach is valid in
theory but difficult in practice.

If no student mentions the plumb-line technique
for finding the centroid of a rigid polygonal sheet,
the teacher can share with the class a result that
carpenters and others have long known—suspend-
ing the sheet from a vertex and attaching a weight-
ed string from the same vertex causes the string to
pass through the centroid. Two such suspensions
will determine the centroid (fig. 2). The suspensions

Thomas Shilgalis, toms@math.ilstu.edu, teaches at Illinois
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Fig. 2
Using the plumb-line method to find
the physical centroid of a quadrilateral region

need not be from vertices, but suspension points
distant from the centroid give the best accuracy.

Having physically established the existence of
the centroid of a rigid uniform polygonal sheet, the
teacher can launch into a rather nice example of
recursion and give some mathematical substance to
the physical concept. In this venture, the use of
interactive software is very helpful. The figures
here were made using The Geometer’s Sketchpad
(Jackiw 1995).

Let us first look at a triangular region. In figure
3, the median A3M; divides the triangular region
A;AyA; into two parts with equal areas because tri-
angles A;A;M; and A,A; M have equal bases, A; M3
and A,M;, and a common altitude from As, hence
the same area. We can easily show that the cen-
troid G of triangle A;A,A; is midway between cen-
troids @ and R of triangles A;A3M; and AyAsMs.
Thus, the products (GQ)(area A;A3;M3) and
(GR)(area AyA3M;) are equal. Since the mass of

GQ= 1.805cm
GR= 1.805cm
Area A;A;M; = 10.411 cm?
Area A2A;M; = 10.411 cm?

A3

Q /c. R

A1 M3 Az

Fig. 3
G is the centroid of triangular region A;A,A;
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region A;A3 M3 is concentrated at @, whereas the
mass of region AyA3 M3 is concentrated at R, the
equality of the products illustrates the familiar
teeter-totter principle. The notion of balancing sub-
regions by suitably placing the balance point will be
exploited as we generalize.

We next turn to a quadrilateral region and use
what we know about triangular regions to construct
the centroid of the four-sided region. In this endeav-
or, it is useful to employ a script in The Geometer’s
Sketchpad to construct the centroids of the four tri-
angular regions determined by the diagonals of the
quadrilateral. After completing a construction,
exercising the Make Script option under Work in
the toolbar saves the selected steps for later use. In
figure 4, these points are G, G,, G, and Gy, the
centroids of triangular regions AyA3A,, AsAA4,

A A Ay, and A A A3, respectively. Following
Peterson (1997), we construct C as the common
point of G;G5 and G,G,. Assuming uniform density
of the material in a model, Sketchpad’s calculations
shown in the figure indicate that C is the balance
point of the opposing pairs of triangular regions.
Dragging a vertex A; gives strong evidence that the
method for determining C is valid, since the prod-
ucts remain equal.

Area AjAA; = 12.903 cm?® CG; * (Area A3;AA;) = 18.387 cm®
CG;=1.425¢cm CG;* (Area A;A;A,) = 18.387 cm®
Area A3;A,A, = 16.726 cm?

CG; =1.099 cm

Area A,AA; = 8.602 cm?
CGs=2.111cm

Area AAA; = 21.027 cm?
CG,=0.864 cm

CG, * (Area AAA;) = 18.161 cm®
CG; * (Area AsAA;) = 18.161 cm®

Fig. 4
C is the centroid of quadrilateral region A;A,A3A,.

Although this approach of decomposing a quadri-
lateral region into a disjoint union of two triangular
regions was successful in finding the centroid of the
quadrilateral region, it does not seem to extend to
the next level, since a pentagonal region has five
triangles that can be formed from three consecutive
vertices. Which ones should be chosen in pairs to
form segments as we did with the quadrilateral’s
four centroids? Because of the limitations of this
method, we look for an alternative.
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Examining the numbers above the drawing in
figure 4, in particular, the equations (CG, ) «
(area AsA,A4) = 18.387 = (CG3)(area A;A A ,), we
see that

CG, _area AjAyA,
CG3 " area A3A2A4 ’

We add 1 to both sides of this equation to get

CG, + CG; _area AjA,A, + area AzAyA,
Gy, area A3A)A, ’

or

G1G3 _area A1A2A3A4
CG3 ~ area A3A2A4 ’

We write the reciprocals as

CG3 _ area A3A2A4
G1G3 - areaA1A2A3A4 ’

Calling the right side of the last equation k, which
here is 0.565, we use a dilation with center G; and
scale factor k£ and apply it to G;. The image of G, is
then the desired centroid C. Recall, for example,
that the dilation with center G3 and scale factor 2/5
pulls every point in the plane back toward Gj so’
that the distance from Gs to the image is two-fifths
of the distance from Gj to the original point. Fig-
ure 5 illustrates this effect, where P'is the image
of P under the dilation D(G3, 2/5). Note that we
could have used G, as the center and 1/k as the
scale factor of the dilation and found C as the
image of Gs instead.

G;P=7.585cm G;P'=3.034cm
GaP i
GP - 0.400
O - ———— O m - ———— o
G3 P! P
Fig. 5
The dilation with center Gz and scale factor 2/5
maps Pto P'.

Readers can verify that the same value of % is
obtained if the numbers below the drawing in fig-
ure 4 are used instead. The upshot is that an
appropriate dilation locates the centroid C, using
just two centroids of subregions. We save the con-
struction of C as a script.

Let us now move on to find the centroid of a pen-
tagonal region A;A,A3A A5, making use of our
techniques for simpler regions. In figure 6, we
decompose this region into the triangular region
A,A,A; and the quadrilateral region A;A4A;A;. We
employ two Sketchpad scripts, one to find the cen-
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Area A,A.A; = 7.958 cm? CG; * (Area A;AzA;) = 17.088 cm?®
CG; =2.147cm CGs * (Area A;A4AsA) = 17.088 cm?®
Area A;A AsA, = 26.791 cm?

CG; =0.638 cm

Area AAzA;

=0.229
(Area A;AzA;) + (Area AjAAsA,)

Fig. 6
C is the centroid of pentagonal region A;A,A3A;As.

troid, call it Gy, of the triangular region and the
other to find the centroid, call it Gs, of the quadri-
lateral region. The dilation with center G5 and scale
factor 0.229, the ratio of

area AjAyA;
areaA;A,A; + area A3A AsA,°

sends G to the centroid C of the pentagonal region.
As a check, we copy the same region, minus some of
the clutter, as figure 7, where we use point C from
figure 6 with triangular region A;A,A;, whose cen-
troid is G4, and quadrilateral region A;A;A3A,,
whose centroid is G3. The equality of the products
shown in figure 7 reinforces the correctness of the
dilation method, based on the teeter-totter princi-
ple, employed to find C.

As

5 A3

Ay A2

Area A;A/A; = 10.315 cm?
CG4 = 2.627 cm

Area A;A;AzA; = 24.434 cm?
CG; =1.109 cm

CG, *(Area A;A4As) = 27.095 cm®
CG; *(Area A;AzA;A;) = 27.095 cm®

Fig. 7
Finding the centroid, C, of the pentagonal region
from figure 6 by a different decomposition

Saving the construction of the pentagonal
region’s centroid as a Sketchpad script permits the
construction of the centroid of a hexagonal region,
which is not shown, and so on. Interestingly, but
not surprisingly, the decomposition of a hexagonal
region need not be into a triangular and a pentago-
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nal region, as the recursive method used here dic-
tates, but can instead employ two nonoverlapping
quadrilateral regions with the same result.

VERTEX SETS

We next look at the triangle from a different view-
point, focusing on the three vertices only and not on
the segments or the interior. This view is some-
times called a mass points approach. (See Skinner
[1995] for an example.) This approach uses the idea
that three masses m;, my, and ms located at non-
collinear points P;, Py, and P; are equivalent to,
and can be replaced by, a single mass m; + mq + ms
located at the “center of mass” of triangle P;P,P;.
The center of mass will be the geometric centroid,
or common point of the medians, if and only if m; =
mg = mg.

Applying this idea to a triangle A;A,A5 with unit
masses at the vertices, we replace the two masses
located at A; and A, with a single mass of two units
located at midpoint M; (fig. 8). The balance point G
of segment M3A; is two-thirds of the way from A; to
M3, and again, we see the teeter-totter principle at
work. The entire mass, or 3 units, of the original
configuration can then be replaced by a three-unit
mass located at G. Symmetry and the concurrence
property of a triangle’s medians imply that we can
choose any two vertices to consider when we do the
mass replacement. We note that the dilation
D(G, -2) sends M; to A;, fori = 1, 2, 3, where a neg-
ative scale factor means that the center G of the
dilation is between the original point M; and its
image A; and where GA; = 2(GM;).

Fig. 8
G is the centroid of the vertex set {A;, A;, Ag).

Let us now look at a quadrilateral’s vertex set.
Each vertex A; of a quadrilateral A;A;A3A, corre-
sponds to a triangle formed by the remaining three
vertices, and each of these triangles has a centroid
G;. Figure 9 focuses on centroid G,. Here the three
unit masses at A;, Ay, and A; are replaced by one
three-unit mass at Gy, and finally the three units at
G, and the one unit at A, are replaced by four units
at @, where @ is on A,G, and QA = 3(QG,).

In figure 10, we show the four centroids G; and
observe that the point @ inside quadrilateral
A;AA;A, lies on the four segments joining the ver-
tices to the corresponding centroids G,, Gy, Gs, and
G, of its four triangles. The dilation D(Q, —3) sends
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Fig. 9
Q is the centroid of the vertex set {A, A,, Az, As).

the centroids of the four triangles to the correspond-
ing vertices of the quadrilateral. That is, D(Q, -3) *
(G))=4,,i=1,2,3,4. In other words, A,Q =
(3/4)(A;G;). We argue as justification that unit
masses at the three points Ay, A3, and A4 can be
replaced by one three-unit mass at G, and that @ is
the balance point of segment A;G;, where A, has a
one-unit mass, by the teeter-totter principle. The
symmetry of the argument and the uniqueness of
the centroid from physical considerations imply
that the same relation holds for the other A;, G;
pairs. A somewhat tedious vector proof that for
each i, A;Q = (3/4) A;G: is also possible and is
available from the authors. Figure 11 shows the
analogous result for the vertex set of a pentagon;

P is the centroid of the five-vertex set. Figure 11
was constructed from a script of the construction of
Q in figure 10. The general result for vertex sets
can be stated as follows:

Again,

Let {A}, Ay, ..., A, be the vertex set of a poly- we see the
gon of n sides. Let G, be the centroid of the teeter-totter
vertex set of the polygon formed by omitting incinl
vertex A;. The segments A;G; are concurrent at principte
a point C, the centroid of the vertex set {A;, A,, at work
...,A,},and foreachi=1,2,...,n, we have
AC =([n - 1)/n)AG;.

QA _

ag. = 3000 e

QA _

QG.~ 3.000

QA; _

QG. - 3.000 ’

QA, _ /

aa." 3.000//,

Fig. 10
@, the centroid of the vertex set {A, A,, A3, As),
lies on the four segments A;G;,i =1, 2, 3, 4.
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PA,
PQ,
PA,
PQ;
PA;
PQ,
PA,

pg, = 4000
PAs
PQs

=4.000

=4.000

=4.000

=4.000

Fig. 11
P, the centroid of the vertex set {A;, A, A3, Ag, As),
lies on the five segments A;G;,i =1, 2, 3, 4, 5.

An alternative formulation makes the centroid of
the vertex set computationally much easier by
using vectors and coordinates. With n vertices, C as
the centroid, and O an arbitrarily chosen origin
from which to draw vectors to the vertices, we have

0_C'=%(O—A{+O_Az'+---+O_A,,').

To justify this result with n = 4, we use the nétation
of figure 12 and take A; as O:

A3G3 =A3A1 +A1A4 +A4G3

Gy: (3.667,2.333) A,
G.: (3.000, 1.000)
G (2.333, 1.333)
Gi: (2.000, 2.333)

A;: (5.000, 0.000)
A,: (2.000, 4.000)
Aq: (0.000, 0.000)
Aq: (4.000, 3.000)

A3 A1

Centroid of vertex set U: (2.750, 1.750)
Centroid of polygonal region V: (2.600, 1.533)

Fig. 12
U, the centroid of the vertex set, and V,
the centroid of the polygonal region,
are generally different.

Using the median property for triangles, we have

A3G3 =A3A1 +A1A4 +%A4A2 +%A4A1

- A +§A1A4 +IAA;

- KA + 2 (A + B+ (RS + A3

= A3A1 + %A1A3 + §A3A4 + §A4A3 + %A,?,AZ’.
Therefore,
1 1 1
A3G3 = 3 A3A1 + §A3A4 + §A3A2 .

Substituting for A;G3, we get
3

A U =2A3G3

- 3 B + A + Bl + A3,

as asserted.

The reader can verify these computations by
using the coordinates in figure 12. The primary
reason for including figure 12 is to show that for a
quadrilateral, the centroid U of the vertex set is dif-
ferent from the centroid V of the polygonal region.
These points coincide for triangles but not for high-
er polygons, except in special cases. Thus, the cen-
troid concept has at least two interpretations—one
for polygonal regions and one for their vertex sets—
as well as a third, which follows.

POLYGONS

Let us now consider centroids of polygons, those fig-
ures modeled by wire frames. Again assuming uni-
form density of the sides, we replace each side by a
mass proportional to its length and located at the
midpoint of the side. Finding the centroid of the
resulting figure is similar to finding the centroid of
the set of midpoints of the sides, which results in a
vertex set for a different polygon; but we now have
to account generally for unequal masses at the mid-
points. Using the A/’s from figure 12 for illustra-
tion in figure 13, we have AjA; = 5, so we put a
mass of 5 at (2.5, 0). Similarly, we put a mass of 10,
the length of A;A,, at the midpoint (4.5, 1.5) of
A;A; put a mass of 5 at the midpoint (3, 3.5) of
A,Ay; and put a mass of 20 at the midpoint (1, 2) of
A,A;. With A; as the origin O and K as the centroid
of the wire-frame quadrilateral, we use the alterna-
tive formulation above, modified to account for the
different masses at the midpoints. Letting ¢ repre-
sent the total mass,

t =5+ 10 + V5 + v20,

2|1 1 we get
A4G3 = §[§A4A2 + §A4A1 } g \l—
1 1 0K = t§<2.5, 0>+ 170<4.5, 1.5>
=§A4A2 +§A4A1. \/5 m
Thus, + 7 <3,35>+ = <1, 2>,
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(2,4) A2

J (3, 3.5)
o
A4 (4, 3) 36 V5
—  wewn
N (4.5, 1.5) ok V10 o N5, 1.5)
(2.549, 1.447)
5
o
A3 (0, 0) M (2.5, 0) A1(5,0) M (2.5, 0)
Fig. 13

K, the centroid of the wire-frame quadrilateral from figure 12,
is different from centroids U and V.

which reduces to approximately <2.549, 1.447>.
Thus, the centroid K of the polygon is (2.549,
1.447), which is different from both U and V in fig-
ure 12,

SUMMARY

We have seen that the phrase “centroid of a polygon”
needs clarification, since for a given polygon, gener-
ally three different points are (1) the “centroids” of
the corresponding polygonal region, (2) the vertex
set of the polygon, and (3) the polygon itself. The
authors are indebted to reviewers Eileen Schoaff,
Carl Backman, Ronald Scoins, and Richard Muller
for prompting a more careful look at these distinct
ideas than we had originally presented. We have
then seen that a blend of physics (the teeter-totter
principle), mathematics (vectors, coordinate geome-
try, and recursion), and technology (for exploration
and clarification) produces results that may be sur-
prising, and these results serve to generalize the
notion of “centroid” to polygons other than triangles.
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