
Centroid of a Polygon—Three Views 

Author(s): Thomas W. Shilgalis and Carol T. Benson 

Source: The Mathematics Teacher , April 2001, Vol. 94, No. 4 (April 2001), pp. 302-307  

Published by: National Council of Teachers of Mathematics 

Stable URL: https://www.jstor.org/stable/20870674

 
REFERENCES 
Linked references are available on JSTOR for this article: 
https://www.jstor.org/stable/20870674?seq=1&cid=pdf-
reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

National Council of Teachers of Mathematics  is collaborating with JSTOR to digitize, preserve 
and extend access to The Mathematics Teacher

This content downloaded from 
�����������146.232.129.75 on Tue, 02 Apr 2024 09:31:01 +00:00����������� 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/20870674
https://www.jstor.org/stable/20870674?seq=1&cid=pdf-reference#references_tab_contents
https://www.jstor.org/stable/20870674?seq=1&cid=pdf-reference#references_tab_contents


 Thomas W. Shilgalis and Carol Benson

 Centroid of a Polygon?Three Views

 w

 Geometry
 students
 are often

 challenged
 to balance

 a cardboard
 triangular
 region on a
 pencil tip

 hen they investigate medians of a triangle, geometry
 students are often challenged to balance a card
 board model on the tip of a pencil. Of course, they
 find that the eraser end works much better than the

 tip. The point of balance for the cardboard model is
 referred to in physics as the center of mass, the
 point at which the entire mass of the model appears
 to be concentrated. Having experienced the center
 of-mass concept physically in this type of exercise,
 students may be ready for a mathematical look. We
 present a possible excursion here.

 Before we get into the details, let us distinguish
 among some terms. First, what is a polygon? We
 like the following definitions:

 Definition: "A polygon is the union of three or
 more segments in the same plane such that each
 segment intersects exactly two others, one at
 each of its endpoints" (Coxford 1993, p. 92). The
 segments are the sides and the endpoints of the
 segments are the vertices.

 Definition: "The union of a polygon and its interior
 is a polygonal region" (Coxford 1993, p. 94).

 Figure 1 shows some polygon-related sets, with
 the vertices subscripted consecutively for later con
 venience. Figure la shows a convex quadrilateral.
 Figure lb shows a nonconvex pentagon. Figure
 lc shows the polygonal region corresponding to the
 polygon in figure la. Figure Id shows only the
 vertex set for the polygon in figure lb.

 When we investigate the idea of the center of
 mass of a polygon, we must distinguish among a
 polygon, which is modeled by a wire frame, as in
 figures la and lb; a polygon's vertex set, modeled
 by a set of dots, as in figure Id; and a polygonal
 region, modeled by a piece of sheet metal or card
 board, as in figure lc. We look first at polygonal
 regions, since one thinks of these regions when the
 phrase "centroid of a polygon" arises.

 Proving that the medians of a triangle meet in a
 point, commonly referred to as the centroid of the
 triangle, is standard fare in geometry classes. That
 this point is also the center of mass of the corre
 sponding triangular region of uniform mass density
 is usually left to the intuitive balancing act men
 tioned previously. The purpose of this article, in the

 A, A,

 Ay
 (a)

 Quadrilateral
 (b)

 Pentagon

 ?A2
 (c) (d)

 Quadrilateral region Pentagon's vertex set

 Fig. 1
 Polygon-related sets

 spirit of exploration and generalization, is to move
 to the question, What would we mean by the center
 of mass, to be referred to as a centroid here, of a

 polygonal region with more than three sides? And if
 we can accept its existence, what can we say about
 its location? Thinking of the cardboard-triangle
 demonstration, students might naturally want to
 try another balancing act. This approach is valid in
 theory but difficult in practice.

 If no student mentions the plumb-line technique
 for finding the centroid of a rigid polygonal sheet,
 the teacher can share with the class a result that

 carpenters and others have long known?suspend
 ing the sheet from a vertex and attaching a weight
 ed string from the same vertex causes the string to
 pass through the centroid. Two such suspensions
 will determine the centroid (fig. 2). The suspensions

 Thomas Shilgalis, toms@math.ilstu.edu, teaches at Illinois
 State University, Normal, IL 61790, and Carol Benson,
 benson@ilstu.edu, teaches at University High School on
 the same campus. Shilgalis is interested in geometry, tech
 nology, and mathematics contests. Benson focuses on
 using students' thinking in instruction.
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 Fig. 2
 Using the plumb-line method to find

 the physical centroid of a quadrilateral region

 need not be from vertices, but suspension points
 distant from the centroid give the best accuracy.

 Having physically established the existence of
 the centroid of a rigid uniform polygonal sheet, the
 teacher can launch into a rather nice example of
 recursion and give some mathematical substance to
 the physical concept. In this venture, the use of
 interactive software is very helpful. The figures
 here were made using The Geometer's Sketchpad
 (Jackiw 1995).

 Let us first look at a triangular region. In figure
 3, the median A3M3 divides the triangular region
 AXA2A3 into two parts with equal areas because tri
 angles A A^ 3 and A2A3M3 have equal bases, A $
 and A2M3, and a common altitude from A3, hence
 the same area. We can easily show that the cen
 troid G of triangle A^2A3 is midway between cen
 troide Q and J? of triangles AiA3M3 and A2A3M3.
 Thus, the products (GQXarea AiA3M3) and
 (Gi?)(area A2A3M3) are equal. Since the mass of

 GQ = 1.805 cm
 GR = 1.805 cm
 Area AiA3M3 = 10.411 cm2
 Area A2A3M3 = 10.411 cm2

 Fig. 3
 G is the centroid of triangular region A1A2A3.

 region A A^ 3 is concentrated at Q, whereas the
 mass of region A2A3M3 is concentrated at R, the
 equality of the products illustrates the familiar
 teeter-totter principle. The notion of balancing sub
 regions by suitably placing the balance point will be
 exploited as we generalize.

 We next turn to a quadrilateral region and use
 what we know about triangular regions to construct
 the centroid of the four-sided region. In this endeav
 or, it is useful to employ a script in The Geometer's
 Sketchpad to construct the centroids of the four tri
 angular regions determined by the diagonals of the
 quadrilateral. After completing a construction,
 exercising the Make Script option under Work in
 the toolbar saves the selected steps for later use. In
 figure 4, these points are Gh G2, G3, and G4, the
 centroids of triangular regions A2A3A4, A3A4Ab

 A4AiA2, and AiA2A3, respectively. Following
 Peterson (1997), we construct C as the common
 point of GiG3 and G2G4. Assuming uniform density
 of the material in a model, Sketchpad's calculations
 shown in the figure indicate that C is the balance
 point of the opposing pairs of triangular regions.
 Dragging a vertex A? gives strong evidence that the
 method for determining C is valid, since the prod
 ucts remain equal.

 Area AiA2AA = 12.903 cm2
 CG3 = 1.425 cm
 Area A3A2A4 = 16.726 cm2
 CGi = 1.099 cm

 CGi
 CG3

 (Area A3A2A4) =
 (Area A^A^ =

 18.387 cm3
 18.387 cm3

 Area A2^A3 = 8.602 cm2
 CG4 = 2.111 cm
 Area A4A1A3 = 21.027 cm2
 CG2 = 0.864 cm

 CG4 ? (Area A^Aa) = 18.161 cm3
 CG2 ? (Area A^As) = 18.161 cm3

 Fig. 4
 C is the centroid of quadrilateral region A^A2A3AA.

 Although this approach of decomposing a quadri
 lateral region into a disjoint union of two triangular
 regions was successful in finding the centroid of the
 quadrilateral region, it does not seem to extend to
 the next level, since a pentagonal region has five
 triangles that can be formed from three consecutive
 vertices. Which ones should be chosen in pairs to
 form segments as we did with the quadrilateral's
 four centroids? Because of the limitations of this

 method, we look for an alternative.

 Suspension
 points
 distant from
 the centroid
 give the best
 accuracy
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 The equality
 of the

 products
 reinforces the
 correctness of

 the dilation
 method

 Examining the numbers above the drawing in
 figure 4, in particular, the equations (CGi) ?
 (area A3A2A4) = 18.387 = (CG3Xarea AiA2A4), we
 see that

 CG,
 area A A2 A4
 area A3A2A4 '

 We add 1 to both sides of this equation to get

 CGi + CG3 _ area A^2A4 + area A3A2A4
 &G? ~ area A3A2A4 '

 or

 Gfis _ area A1A2A3A4
 CG3 ~ areaA3A2A4

 We write the reciprocals as

 CG3 _ area A3A2A4
 GiG3 ~ area A A2A3A4 '

 Calling the right side of the last equation k, which
 here is 0.565, we use a dilation with center G3 and
 scale factor k and apply it to Gj,. The image of G\ is
 then the desired centroid C. Recall, for example,
 that the dilation with center G3 and scale factor 2/5

 pulls every point in the plane back toward G3 so'
 that the distance from G3 to the image is two-fifths
 of the distance from G3 to the original point. Fig
 ure 5 illustrates this effect, where Px is the image
 of under the dilation Z)(G3, 2/5). Note that we
 could have used Gi as the center and Ilk as the
 scale factor of the dilation and found C as the

 image of G3 instead.

 G3P = 7.585 cm G3P' = 3.034 cm

 G3P'
 G3P = 0.400

 G3

 Fig. 5
 The dilation with center G3 and scale factor 2/5

 maps to '.

 Readers can verify that the same value of k is
 obtained if the numbers below the drawing in fig
 ure 4 are used instead. The upshot is that an
 appropriate dilation locates the centroid C, using
 just two centroids of subregions. We save the con
 struction of C as a script.

 Let us now move on to find the centroid of a pen

 tagonal region A!A2A3A4A5, making use of our
 techniques for simpler regions. In figure 6, we
 decompose this region into the triangular region
 A^2A3 and the quadrilateral region AsA4A5Ai. We
 employ two Sketchpad scripts, one to find the cen

 A4

 *5

 A! A2

 Area A^Aa = 7.958 cm2 Cd ? (Area A^Aa) = 17.088 cm3
 CGi = 2.147 cm CG5 ? (Area A3A4A5A1) = 17.088 cm3
 Area A3A4ASA1 = 26.791 cm2
 CG5 = 0.638 cm

 _Area AiA2A3_ Q 22g
 (Area A^As) + (Area A^AsAi) ~

 Fig. 6
 C is the centroid of pentagonal region A^A2A3A4A5.

 troid, call it Gh of the triangular region and the
 other to find the centroid, call it G5, of the quadri

 lateral region. The dilation with center G5 and scale
 factor 0.229, the ratio of

 area AiA2A3
 area A A2A3 + area A3A4A5A! '

 sends Gi to the centroid C of the pentagonal region.
 As a check, we copy the same region, minus some of
 the clutter, as figure 7, where we use point C from
 figure 6 with triangular region A]A4A5, whose cen
 troid is G4, and quadrilateral region A A2A A^
 whose centroid is G3. The equality of the products
 shown in figure 7 reinforces the correctness of the
 dilation method, based on the teeter-totter princi

 ple, employed to find C.

 A4

 Ai A2

 Area A1 A,A5 = 10.315 cm2 CG4 * (Area A, A4A5) = 27.095 cm3
 CG4 = 2.627 cm CG3 * (Area A1A2A3A4) = 27.095 cm3
 Area A1A2A3A4 - 24.434 cm2
 CG3 = 1.109 cm

 Fig. 7
 Finding the centroid, C, of the pentagonal region

 from figure 6 by a different decomposition

 Saving the construction of the pentagonal
 region's centroid as a Sketchpad script permits the
 construction of the centroid of a hexagonal region,
 which is not shown, and so on. Interestingly, but
 not surprisingly, the decomposition of a hexagonal
 region need not be into a triangular and a pentago
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 nal region, as the recursive method used here dic
 tates, but can instead employ two nonoverlapping
 quadrilateral regions with the same result.

 VERTEX SETS
 We next look at the triangle from a different view
 point, focusing on the three vertices only and not on
 the segments or the interior. This view is some
 times called a mass points approach. (See Skinner
 [1995] for an example.) This approach uses the idea
 that three masses mh m2, and ra3 located at non

 collinear points Ph P2i and P3 are equivalent to,
 and can be replaced by, a single mass m + m2 + m3
 located at the "center of mass" of triangle P\P2Ps.
 The center of mass will be the geometric centroid,
 or common point of the medians, if and only if mi =
 m2 = m3.

 Applying this idea to a triangle AiA2A3 with unit
 masses at the vertices, we replace the two masses
 located at Ai and A2 with a single mass of two units
 located at midpoint M3 (fig. 8). The balance point G
 of segment M3A3 is two-thirds of the way from A3 to

 M3, and again, we see the teeter-totter principle at
 work. The entire mass, or 3 units, of the original
 configuration can then be replaced by a three-unit
 mass located at G. Symmetry and the concurrence
 property of a triangle's medians imply that we can
 choose any two vertices to consider when we do the

 mass replacement. We note that the dilation
 D(G, -2) sends M? to A?, for i = 1, 2, 3, where a neg
 ative scale factor means that the center G of the

 dilation is between the original point Mt and its
 image A? and where GA? = 2(GM?).

 Let us now look at a quadrilateral's vertex set.
 Each vertex A? of a quadrilateral A]A2A3A4 corre
 sponds to a triangle formed by the remaining three
 vertices, and each of these triangles has a centroid
 Gj. Figure 9 focuses on centroid G4. Here the three
 unit masses at Ah A2, and A3 are replaced by one
 three-unit mass at G4, and finally the three units at
 G4 and the one unit at A4 are replaced by four units
 at Q, where Q is on A4G4 and QA4 = 3(QG4).

 In figure 10, we show the four centroide G? and
 observe that the point Q inside quadrilateral
 A A^A^ lies on the four segments joining the ver
 tices to the corresponding centroids Gh G2, G3, and
 G4 of its four triangles. The dilation D(Q, -3) sends

 the centroids of the four triangles to the correspond
 ing vertices of the quadrilateral. That is, D(Q, -3) ?
 (G; ) = Ah i = 1, 2, 3,4. In other words, AtQ =
 (3/4)(A?G?). We argue as justification that unit

 masses at the three points A2, A3, and A4 can be
 replaced by one three-unit mass at Gi and that Q is
 the balance point of segment Afih where Ai has a
 one-unit mass, by the teeter-totter principle. The
 symmetry of the argument and the uniqueness of
 the centroid from physical considerations imply
 that the same relation holds for the other A?, G?
 pairs. A somewhat tedious vector proof that for
 each i, A?Q = (3/4) A{G? is also possible and is
 available from the authors. Figure 11 shows the
 analogous result for the vertex set of a pentagon;

 is the centroid of the five-vertex set. Figure 11
 was constructed from a script of the construction of
 Q in figure 10. The general result for vertex sets
 can be stated as follows:

 Let {Ah A2,..., An] be the vertex set of a poly
 gon of sides. Let G? be the centroid of the
 vertex set of the polygon formed by omitting
 vertex Ak. The segments A?G? are concurrent at
 a point C, the centroid of the vertex set {Ah A2,
 ..., AJ, and for each i = 1, 2,..., , we have

 AiC = ([n-l]/n)AiGi.

 : 3.000

 Fig. 10
 Q, the centroid of the vertex set {A^ ,A2,A3>A4

 lies on the four segments A,-G,?, ?=1,2,3,4.

 Again,
 we see the
 teeter-totter

 principle
 at work
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 Fig. 11
 , the centroid of the vertex set [A^, A2, A3, A4, A5},
 lies on the five segments A,-G,?, i = 1, 2, 3, 4, 5.

 An alternative formulation makes the centroid of

 the vertex set computationally much easier by
 using vectors and coordinates. With vertices, C as
 the centroid, and O an arbitrarily chosen origin
 from which to draw vectors to the vertices, we have

 ^ = i(Q?T + ???+ --- + Q?T).

 To justify this result with = 4, we use the notation
 of figure 12 and take A3 as 0:

 A3G3 =ASA1 +A A4 +A4G3

 G3: (3.667, 2.333)
 G2: (3.000,1.000)
 G4: (2.333,1.333)
 G?: (2.000, 2.333)

 Al* (5.000, 0.000)
 A2: (2.000, 4.000)
 A3: (0.000, 0.000)
 A4: (4.000,3.000)

 Centroid of vertex set U: (2.750,1.750)
 Centroid of polygonal region V: (2.600,1.533)

 Fig. 12
 U, the centroid of the vertex set, and V,

 the centroid of the polygonal region,
 are generally different.

 Using the median property for triangles, we have

 A4G3 =j
 1

 A4A2 +hA4A?

 gA4A2 +g A4A1.
 Thus,

 A3G3 =A3AX +?i?7 + gA4A2 +gA??7

 :A3Ai +gAiA4 +7jA4A2

 :ASA1 +^{A1AS +A3A4)+^{A4A3 +A3A2)

 = A3Al +gAxA3 +gA3A4 +gA4A3 + gA3A2.
 Therefore,

 A3G3 =^A3A + jA3A4 +gA3A2.

 Substituting for A3G3, we get

 A3?7 =|A3G3

 = ^(A3A +A3A4 +A3A2 +A3A3),
 as asserted.

 The reader can verify these computations by
 using the coordinates in figure 12. The primary
 reason for including figure 12 is to show that for a
 quadrilateral, the centroid U of the vertex set is dif
 ferent from the centroid V of the polygonal region.

 These points coincide for triangles but not for high
 er polygons, except in special cases. Thus, the cen
 troid concept has at least two interpretations?one
 for polygonal regions and one for their vertex sets?
 as well as a third, which follows.

 POLYGONS
 Let us now consider centroids of polygons, those fig
 ures modeled by wire frames. Again assuming uni
 form density of the sides, we replace each side by a
 mass proportional to its length and located at the
 midpoint of the side. Finding the centroid of the
 resulting figure is similar to finding the centroid of
 the set of midpoints of the sides, which results in a
 vertex set for a different polygon; but we now have
 to account generally for unequal masses at the mid
 points. Using the A/s from figure 12 for illustra
 tion in figure 13, we have A3A = 5, so we put a

 mass of 5 at (2.5, 0). Similarly, we put a mass of 10,
 the length of A]A4, at the midpoint (4.5,1.5) of

 A A4; put a mass of 5 at the midpoint (3,3.5) of
 A4A2; and put a mass of 20 at the midpoint (1, 2) of
 A2A3. With A3 as the origin 0 and as the centroid
 of the wire-frame quadrilateral, we use the alterna
 tive formulation above, modified to account for the
 different masses at the midpoints. Letting t repre
 sent the total mass,

 we get

 ? = 5 + VT? + V5 + V2?,

 ?lf = ^<2.5, 0> + ^<4.5,1.5>

 4<3,3.5> + f <1,2>,
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 (2, 4) A2

 A3 (0, 0) M (2.5, 0) A1 (5, 0) M (2.5j 0)

 Fig. 13
 K, the centroid of the wire-frame quadrilateral from figure 12,

 is different from centroids i/and V".

 which reduces to approximately <2.549,1.447>.
 Thus, the centroid of the polygon is (2.549,
 1.447), which is different from both U and V in fig
 ure 12.

 SUMMARY
 We have seen that the phrase "centroid of a polygon"
 needs clarification, since for a given polygon, gener
 ally three different points are (1) the "centroids" of
 the corresponding polygonal region, (2) the vertex
 set of the polygon, and (3) the polygon itself. The
 authors are indebted to reviewers Eileen Schoaff,
 Carl Backman, Ronald Scoins, and Richard Muller
 for prompting a more careful look at these distinct
 ideas than we had originally presented. We have
 then seen that a blend of physics (the teeter-totter
 principle), mathematics (vectors, coordinate geome
 try, and recursion), and technology (for exploration
 and clarification) produces results that may be sur
 prising, and these results serve to generalize the
 notion of "centroid" to polygons other than triangles.
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