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e THE ART OF TEACHING ¢

Centroids

By H. v. BARAVALLE
Adelphi College, Garden City, N. Y.

In GEOMETRY classes we occasionally
meet with the question: “What is geom-
etry good for?”’ Usually the description of
practical applications “will provide the
necessary answer. But in some cases.-the
same question if it had been more ac-
curately formulated, would read: “Can
you convey to me experiences showing
that geometry has a meaning and reality
beyond man-made definitions and
theorems?”’ Then the answer could be
given somewhat in the line of the following
example. One would say to the student:
“Let me show you something. Here is a
piece of cardboard in shape of a triangle.
Try to balance it on the eraser-end of your
pencil.” The student will make a few at-
tempts and finally succeed in finding the
point where the cardboard has to be sup-
ported in order to uphold itself in equi-
librium. Then one will show that the same
point can be obtained without any experi-
mentation through geometric construc-
tion. It is the point of intersection of the
medians of the triangle (Figure 1).

Fic. 1. Centroid of a triangle.

A study of centroids is especially fit to
build the bridge between geometric con-
structions and facts related to natural
sciences. The position of a centroid is in-
dependent of the circumstance whether

one measured in inches or centimeters and

of whatever terms or definitions had been

used in support of the constructions.

From the centroid of a triangle one can
proceed to the centroid of a quadrilateral.
A diagonal divides a quadrilateral into two
triangles. For eaeh of the triangles the
centroid can be obtained as the point of
intersection of two medians. An edge sup-
porting both centroids balances the quad-
rilateral; the straight line joining the
centroids is a locus for the centroid of the
quadrilateral (see Figure 2, left diagram).
The second diagonal also divides a quadri-
lateral into two triangles which are differ-
ent from the first ones. The straight line
joining their centroids is again a locus for
the centroid of the quadrilateral (see
Figure 2, right diagram). Therefore the
centroid of the quadrilateral is found as
the point of intersection of the two loci
(see Figure 2, third diagram). By means
of cutting the given quadrilateral out
of a piece of cardboard the position
of the centroid can be checked experi-
mentally.

The 8 medians through which the
centroid of the quadrilateral has been ob-
tained form a stellar octagon which is
inscribed in the quadrilateral. Figure 3
shows a stellar octagon inscribed in a
circle. The circle is divided into 8 equal
parts and every point of division is joined
with the third one following it in either
way around the circle. Figure 4 shows a
stellar octagon inscribed in a square. The
8 points which are used to construct the
stellar octagon are the four vertices and
the four middle points of the sides of the
square. Each point is joined with the
third one following it in either way around
the square. In Figure 5 the construction of
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Fic. 2. Centroid of a quadrilateral.

an inscribed stellar octagon is repeated
once more for an irregular quadrilateral,
using again its vertices and the middle
points of its sides. The dotted lines con-
necting the centroids of the partial
triangles intersect in the centroid of the
quadrilateral.

A short cut in the construction of the
centroid of a quadrilateral can be achieved
through the method shown in Figure 6. The
given quadrilateral ABDE is divided
through the diagonal BE into two tri-
angles (AABE and ABDE). In each
triangle two medians are drawn and their
points of intersection C; and C, are the
centroids. The straight line C; C; connect-
ing the centroids contains the centroid of
the quadrilateral. Would the two triangles
have been of the same area their common
centroid C would be half way between C;
and C,. But as soon as one triangle is
larger than the other C lies closer to the
centroid of the larger triangle. Following

the law of moments the ratio of the dis-
tance of C from C; and C, is the reciprocal
values of the ratio of the areas A, and A4,
of the respective triangles:

cC, A,

The areas are proportional to the altitudes
of these triangles drawn perpendicularly
to their common base. In Figure 6 the
altitude a, is transferred to the perpendic-
ular to C,C; erected in C, and the altitude
az to the perpendicular to C,C; erected in
C:. The inclined line joining the end-
points of the perpendiculars intersects
C\C; in C. Through the law of similar
triangles we get

CCl (17 Az

CC: a 4

Therefore C is the common centroid of the
triangles and the centroid of the quadri-
lateral.
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THE ART OF TEACHING

Fig. 3. Stellar octagon in-
seribed in a circle.

In Figure 7 the procedure is simplified
to merely transferring the distance d be-
tween C» and the point of intersection S of
C.,C, with the diagonal BE: C,S=C,C.
This construction is based on the fact that
C,S and C,S are proportional to one-third
of a; and a; respectively, therefore also to
a1 and a, themselves and to the areas of
the two triangles.

These constructions can also be applied
to find the centroid of polygons. The pro-
cedure is shown in Figure 8 and Figure 9
for an irregular hexagon: ABDEFG. In
Figure 8 the diagonals from one vertex
A of the hexagon are drawn: AD, AE, AF.
These diagonals divide the hexagon into
4 triangles. In each triangle the centroid is
obtained through the medians. From the
centroids C; and C, the combined centroid

D

Fi1G. 6

Fig. 4. Stellar octagon inscribed
in a square.

Fic. 5. Stellar octagon inseribed
in a quadrilateral. Centroid.

Ct is then constructed through the method
of Figure 7, and so also the combined
centroid Cy between C; and C,. Finally
C: and Cy are combined to the common
centroid C. This has been carried out in
Figure 9 following again the principle of
Figure 7. The only difference between the
constructions of Figure 9 and Figure 7 lies
in the fact that Figure 7 deals with 2
triangles on a common base whose alti-
tudes have the ratio of their areas whereas
Figure 9 deals with 2 quadrilaterals. The
quadrilaterals can be transformed into
triangles with the common base AE: From
the quadrilateral A BDE the triangle BDE
is cut off through the diagonal BE and is
replaced by the triangle EBH which is of
the same area because the line DH is
drawn parallel to BE. Following the same

D

F16. 7
Further constructions of the centroid of a quadrilateral.
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construction the triangle EGF is cut off
from the quadrilateral AEFG and replaced
by the triangle GEK of the same area (FK
is parallel to EG). After the quadrilaterals
have been replaced by triangles their
altitudes a; and a, perpendicular to the
common base can be used in the same way
as in Figure 7 to find the centroid C.

The results of all the constructions of
centroids can be verified through experi-
ments. A piece of cardboard cut out in

Fic. 8

THE MATHEMATICS TEACHER

at two different points two lines are ob-
tained whose point of intersection is the
centroid. All additional lines derived from
further points of suspension also concur in
the centroid.

A second way to obtain the centroid of
an area by experiment is to hold the card-
board in a vertical plane and balance it on
one point of its lower edge. After the
position in which the cardboard will
balance on this point has been determined

Frc. 9

Construction of the centroid of a hexagon.

shape of the given polygon will be in
balance when supported at the centroid.

There are also various other ways to
find centroids experimentally. Take a
piece of cardboard and suspend it on a
thread by making a cut with a razor blade
into the cardboard at any point along its
edge and pulling a thread through it.
Friction will uphold the cardboard on the
thread. When the cardboard is suspended
the centroid lies exactly vertically under
the point of suspension. It is therefore
located along a vertical line which can be
drawn on the cardboard from the point of
suspension perpendicularly downward.
The latter can be drawn with the aid of a
pendulum consisting of a small weight, for
instance an eraser, hanging on a thread.
By suspending the cardboard successively

a vertical line drawn upward from the
point of support on the cardboard is a locus
of the centroid. A pendulum can again be
used to obtain the exact position of this
line. Two such lines drawn from two
different points of support intersect in the
centroid. Further lines obtained in the
same way concur in the centroid. This
method works best with larger pieces of
cardboard; smaller ones are more handy
to be suspended than supported.

A third way consists in balancing the
cardboard in horizontal position on a
straight edge, for instance on the edge of a
ruler. Any straight line drawn across the
cardboard along which it will balance is a
locus of the centroid. Two different ex-
periments yield two different straight lines
and their point of intersection is the
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THE ART OF TEACHING

centroid. All other straight lines along
which the cardboard can be balanced also
concur in the centroid.

A fourth method proceeds along the way
which is followed to derive the formula for
the coordinates of the centroid in the
calculus. It uses two rulers, the cardboard
and a duplicate of the cardboard. One
ruler is held in horizontal position and is
balanced on the edge of the second ruler
(see Figure 10). One of the cardboards is

245

an axis of symmetry is the following: After
the axis of symmetry has been marked on
the cardboard one aims to suspend it on a
thread in such a manner that the axis will
stay in horizontal position. As every axis
of symmetry is in itself a locus for the
centroid the latter is its point perpendic-
ularly under the point of suspension. The
same method can be applied to solids, for
instance to wooden models suspended on
threads which are held to the solids by

..........................

Fic. 10. Experiment to find the centroid of a cardboard-area.

placed in horizontal position on one side of
the ruler and the duplicate is hung from a
thread on the other side of the ruler. By
placing this thread closer to or further
away from the fulerum its position can be
determined in which the two cardboards
will be in equilibrium. The centroid of the
horizontal piece of cardboard is located at
the same distance d from the balancing
edge as the thread on which the duplicate
is suspended. Therefore a straight line
drawn on the cardboard at a distance d
from the balancing edge is a locus of the
centroid. By changing the position of the
cardboard which lies horizontally on the
ruler and repeating the experiment a
second locus for the centroid will be ob-
tained. The point of intersection of the
two loci is the centroid.

An experiment which demonstrates the
position of centroids for areas which have

strips of scotch tape. Figure 11 shows the
positions of centroids for areas and solids.
The centroid divides the axis in certain
ratios, as 3 for a rectangle, prism or
cylinder, 1 for a triangle or a paraboloid, }
for a pyramid or a cone, £ for a parabola
segment and ¢ for a hemisphere. For the
semi-circle the constant 7 appears in the
ratio which is 4/3x. Those ratios are ob-
tained through the calculus.

Another experiment (Figure 12) shows
the balancing of a line. A wire is bent in a
broken line composed of six straight line
segments. The wire will stay in equilibrium
with the first and last segment in hori-
zontal position when it is suspended or
supported at the point C. The figure
also shows the construction of point C
by the methods of graphic statics using
a “force and equilibrium polygon.” At
the middle point of each segment are
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F1G. 11. Suspending of areas and solids in horizontal position.
Ratios of the positions of the centroids.

drawn arrows representing the forces of
gravity. The lengths of the arrows are
proportional to the lengths of the seg-
ments. In Figure 12 each arrow has half
the length of a segment. The same lengths
are transferred to the force polygon (right
diagram of Figure 12). The end points of

3

Sl

/\w~c~/ "/\

M

all the segments are connected with a
point P that may be chosen at will. From
these lines the equilibrium polygon is ob-
tained, which is drawn between the verti-
cal lines dropped from the six arrows.
Between the vertical lines of 1 and 2 a
parallel to the line in the force polygon

e

B 6

Fia. 12. Balancing of a broken line.
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F1g. 13. Parallelogram of forces combining two concurrent forces.

connecting P with the point between the
segments 1 and 2 is drawn. Then a second
parallel line is drawn from the end of the
first one between the verticals 2 and 3,
parallel to the line connecting P with the
point between the segments 2 and 3. So
one continues until the last vertical is
reached. Then from the end point of the
last parallel a line is drawn parallel to the
connection of P with the end of segment 6
and from the beginning of the equilibrium
polygon a line parallel to the connecting
line from P to the top of segment 1. From
the point of intersection of these last two
lines the vertical line which is shown in the
figure in dots and dashes is drawn upwards
and determines C. In this procedure three
kinds of constructions are contained in a
condensed form.

The first is the construction of a paral-
lelogram of forces which combines two
forces (F1 and F, in Figure 13) acting on an
object at a point A. The resultant force R
is obtained, both in its size and direction,
as the diagonal of a parallelogram of forces.
A force R of the same strength but acting
on A in the apposite direction balances the
forces Fr and F, and keeps the object in
equilibrium (Figure 13, right diagram).

A second construction combines two
forces which act on two different points
(Force F; acting on point A and Force F,

‘B
F,

on point B which both lie on a rectangular
board drawn in Figure 14). The construc-
tion proceeds by extending the arrows of
the given forces backwards until they
intersect. At the point of intersection C the
parallelogram of forces is drawn which
yields the resultant R. A force R equal in
strength to the resultant K but acting in
the opposite direction on any point C
along the diagonal of the parallelogram of
forces will keep the board in equilibrium
(Figure 14, right diagram).

The construction of Figure 14 can be
carried out for any two forces except for
parallel forces. But cases of parallel forces
occur especially frequently as they include
the forces of gravity. Parallel forces can be
handled through the trick of adding an
arbitrarily chosen pair of equal opposite
forces. The procedure is shown in Figure
15, left diagram. The given forces are F,
acting on point A and F, acting on point
B. The additional pair of forces consists of
G: and @,. First F, and G, are combined in
a parallelogram of forces and their re-
sultant is R;. Then R, and F, are combined
as non-concurrent forces and their re-
sultant is R.. Finally R, and @ are com-

. bined as non-concurrent forces and their

resultant R is directed perpendicularly
downwards, its length being equal to the
sum of the lengths of the arrows F, and F,.

Fic. 14. Parallelogram of forces for two non-concurrent forces.
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Fra. 15. Resultant of two parallel forces.

A force R of the same strength as R but
with the opposite direction acting on the
same point as R restores the equilibrium.
In the right diagram the forces F; and F,
are interpreted as weights suspended on a
ruler. The ruler stays in equilibrium when
supported at a point with the same dis-
tances from the given forces as R.
Repeated application of this construc-
tion solves the problem to find the centroid
of the wire in Figures 12 and 16. The forces
of gravity which apply to the 6 sections of
the wire are denoted simply as 1, 2, 3, 4, 5
and 6. The additional pair of forces is Gy
and G,. First 1 and G, are combined in a

(T

parallelogram of forces which yields a
resultant. Then this resultant is further
combined with force 2 and so forth until
one arrives at the last resultant which is
finally combined with G,. Thus the posi-
tion of the ultimate resultant is reached.
On the right hand of this diagram the force
polygon of Figure 12 is repeated. In it the
lengths of the segments 1 to 6 equal those
of the arrows 1 to 6. The position of the
point P has been so chosen that PA equals
Gi. A systematic comparison of the force
polygon with the diagram on the left side
of Figure 16 will show that the force
polygon is but a condensation of this
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F1c. 16. Derivation of the construction of the centroid by force and equilibrium polygons.
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Fic. 17. Construction of the centroid of an area through force and equilibrium polygons.

diagram and is composed of triangles
which are congruent to those which appear
in' the parallelograms of forces. Thus the
construction of the force and equilibrium
polygons of Figures 12 and 16 derives itself
from the basic constructions of the Figures
13 to 15.

_ Finally the construction of force and
equilibrium polygons can be applied to an
irregular polygon, as in Figure 17. The
diagonals drawn from one vertex of the
polygon divide it into triangles. For each
triangle the centroid has been obtained
(through medians not shown in the dia-
gram). From the ¢entroids of the triangles
arrows are drawn representing the forces
of gravity whose lengths are proportional
to the areas of the triangles. From the
lengths of these arrows the force polygon
has been set up and through it the
equilibrium polygon which is a locus

of the centroid (See dots and dashes).
Imagining then that the given area with
the diagram be turned 90° so that the
parallel lines which are drawn from the
centroids of the triangles to the right come
into perpendicular position, the construc-
tion of the force and equilibrium polygon
can be repeated once more. Thus a second
line shown in dots and dashes is obtained
which is also a locus for the centroid of the
area. The point of intersection of the 2
loci is the final centroid C. The same con-
struction can be carried out without an
excessive amount of lines to find the
centroid of any given polygon. Its results
will be the same whatever vertex may
have been chosen to draw the diagonals
across the polygon or whatever decision
has been made to divide the area into
triangles. The centroid thus obtained can
be checked by experiment. '
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