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 THE ART OF TEACHING
 Centroids

 By H. v. Bara valle
 Adelchi College, Garden City, N. Y.

 In geometry classes we occasionally
 meet with the question: "What is geom
 etry good for?" Usually the description of
 practical applications 'will provide the
 necessary answer. But in some cases the
 same question if it had been more ac
 curately formulated, would read: "Can
 you convey to me experiences showing
 that geometry has a meaning and reality
 beyond man-made definitions and
 theorems?" Then the answer could be
 given somewhat in the line of the following
 example. One would say to the student:
 "Let me show you something. Here is a
 piece of cardboard in shape of a triangle.
 Try to balance it on the eraser-end of your
 pencil." The student will make a few at
 tempts and finally succeed in finding the
 point where the cardboard has to be sup
 ported in order to uphold itself in equi
 librium. Then one will show that the same

 point can be obtained without any experi
 mentation through geometric construc
 tion. It is the point of intersection of the
 medians of the triangle (Figure 1).

 Fig. 1. Centroid of a triangle.

 A study of centroids is especially fit to
 build the bridge between geometric con
 structions and facts related to natural
 sciences. The position of a centroid is in
 dependent of the circumstance whether
 one measured in inches or centimeters and
 of whatever terms or definitions had been

 Used in support of the constructions.
 From the centroid of a triangle one can

 proceed to the centroid of a quadrilateral.
 A diagonal divides a quadrilateral into two
 triangles. For each of the triangles the
 centroid can be obtained as the point of
 intersection of two medians. An edge sup
 porting both centroids balances the quad
 rilateral; the straight line joining the
 centroids is a locus for the centroid of the

 quadrilateral (see Figure 2, left diagram).
 The second diagonal also divides a quadri
 lateral into two triangles which are differ
 ent from the first ones. The straight line
 joining their centroids is again a locus for
 the centroid of the quadrilateral (see
 Figure 2, right diagram). Therefore the
 centroid of the quadrilateral is found as
 the point of intersection of the two loci
 (see Figure 2, third diagram). By means
 of cutting the given quadrilateral out
 of a piece of cardboard the position
 of the centroid can be checked experi
 mentally.

 The 8 medians through which the
 centroid of the quadrilateral has been ob
 tained form a stellar octagon which is
 inscribed in the quadrilateral. Figure 3
 shows a stellar octagon inscribed in a
 circle. The circle is divided into 8 equal
 parts and every point of division is joined
 with the third one following it in either
 way around the circle. Figure 4 shows a
 stellar octagon inscribed in a square. The
 8 points which are used to construct the
 stellar octagon are the four vertices and
 the four middle points of the sides of the
 square. Each point is joined with the
 third one following it in either way around
 the square. In Figure 5 the construction of

 241
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 Fig. 2. Centroid of a quadrilateral.

 an inscribed stellar octagon is repeated
 once more for an irregular quadrilateral,
 using again its vertices and the middle
 points of its sides. The dotted lines con
 necting the centroids of the partial
 triangles intersect in the centroid of the
 quadrilateral.

 A short cut in the construction of the
 centroid of a quadrilateral can be achieved
 through the method shown in Figure 6. The
 given quadrilateral AB DE is divided
 through the diagonal BE into two tri
 angles (AABE and ABDE). In each
 triangle two medians are drawn and their
 points of intersection C\ and C2 are the
 centroids. The straight line C\ C2 connect
 ing the centroids contains the centroid of
 the quadrilateral. Would the two triangles
 have been of the same area their common
 centroid C would be half way between Ci
 and C2. But as soon as one triangle is
 larger than the other C lies closer to the
 centroid of the larger triangle. Following

 the law of moments the ratio of the dis
 tance of C from Ci and C2 is the reciprocal
 values of the ratio of the areas A and A2
 of the respective triangles:

 Cd _A2
 ~CC~2~Jl '

 The areas are proportional to the altitudes
 of these triangles drawn perpendicularly
 to their common base. In Figure 6 the
 altitude ax is transferred to the perpendi c
 ular to CiC2 erected in C2 and the altitude
 a2 to the perpendicular to C\C2 erected in
 Ci. The inclined line joining the end
 points of the perpendiculars intersects
 CiC2 in C. Through the law of similar
 triangles we get

 CCi a2 A2
 CC2 ai Ai

 Therefore C is the common centroid of the

 triangles and the centroid of the quadri
 lateral.
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 Fig. 3. Stellar octagon in
 scribed in a circle.

 Fig. 4. Stellar octagon inscribed
 in a square.

 Fig. 5. Stellar octagon inscribed
 in a quadrilateral. Centroid.

 In Figure 7 the procedure is simplified
 to merely transferring the distance d be
 tween C2 and the point of intersection S of
 C1C2 with the diagonal BE: C2S = CiC.
 This construction is based on the fact that
 C2S and CiS are proportional to one-third
 of ai and a2 respectively, therefore also to
 ai and a2 themselves and to the areas of
 the two triangles.

 These constructions can also be applied
 to find the centroid of polygons. The pro
 cedure is shown in Figure 8 and Figure 9
 for an irregular hexagon: ABDEFG. In
 Figure 8 the diagonals from one vertex
 A of the hexagon are drawn: AD, AE, AF.
 These diagonals divide the hexagon into
 4 triangles. In each triangle the centroid is
 obtained through the medians. From the
 centroids Ci and C2 the combined centroid

 Ci is then constructed through the method
 of Figure 7, and so also the combined
 centroid Cu between C3 and Ca. Finally
 Ci and Cu are combined to the common
 centroid C. This has been carried out in
 Figure 9 following again the principle of
 Figure 7. The only difference between the
 constructions of Figure 9 and Figure 7 lies
 in the fact that Figure 7 deals with 2
 triangles on a common base whose alti
 tudes have the ratio of their areas whereas

 Figure 9 deals with 2 quadrilaterals. The
 quadrilaterals can be transformed into
 triangles with the common base AE : From
 the quadrilateral A DE the triangle BD E
 is cut off through the diagonal BE and is
 replaced by the triangle EBH which is of
 the same area because the line DH is
 drawn parallel to BE. Following the same

 Fig. 6 Fig. 7
 Further constructions of the centroid of a quadrilateral.
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 construction the triangle EGF is cut off
 from the quadrilateral AEFG and replaced
 by the triangle GEK of the same area (FK
 is parallel to EG). After the quadrilaterals
 have been replaced by triangles their
 altitudes a\ and a2 perpendicular to the
 common base can be used in the same way
 as in Figure 7 to find the centroid C.

 The results of all the constructions of
 centroids can be verified through experi
 ments. A piece of cardboard cut out in

 E

 shape of the given polygon will be in
 balance when supported at the centroid.

 There are also various other ways to
 find centroids experimentally. Take a
 piece of cardboard and suspend it on a
 thread by making a cut with a razor blade
 into the cardboard at any point along its
 edge and pulling a thread through it.
 Friction will uphold the cardboard on the
 thread. When the cardboard is suspended
 the centroid lies exactly vertically under
 the point of suspension. It is therefore
 located along a vertical line which can be
 drawn on the cardboard from the point of
 suspension perpendicularly downward.
 The latter can be drawn with the aid of a
 pendulum consisting of a small weight, for
 instance an eraser, hanging on a thread.
 By suspending the cardboard successively

 at two different points two lines are ob
 tained whose point of intersection is the
 centroid. All additional lines derived from

 further points of suspension also concur in
 the centroid.

 A second way to obtain the centroid of
 an area by experiment is to hold the card
 board in a vertical plane and balance it on
 one point of its lower edge. After the
 position in which the cardboard will
 balance on this point has been determined

 E

 H

 a vertical line drawn upward from the
 point of support on the cardboard is a locus
 of the centroid. A pendulum can again be
 used to obtain the exact position of this
 line. Two such lines drawn from two
 different points of support intersect in the
 centroid. Further lines obtained in the
 same way concur in the centroid. This

 method works best with larger pieces of
 cardboard; smaller ones are more handy
 to be suspended than supported.

 A third way consists in balancing the
 cardboard in horizontal position on a
 straight edge, for instance on the edge of a
 ruler. Any straight line drawn across the
 cardboard along which it will balance is a
 locus of the centroid. Two different ex
 periments yield two different straight lines
 and their point of intersection is the
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 centroid. All other straight lines along
 which the cardboard can be balanced also
 concur in the centroid.

 A fourth method proceeds along the way
 which is followed to derive the formula for
 the coordinates of the centroid in the
 calculus. It uses two rulers, the cardboard
 and a duplicate of the cardboard. One
 ruler is held in horizontal position and is
 balanced on the edge of the second ruler
 (see Figure 10). One of the cardboards is

 an axis of symmetry is the following: After
 the axis of symmetry has been marked on
 the cardboard one aims to suspend it on a
 thread in such a manner that the axis will

 stay in horizontal position. As every axis
 of symmetry is in itself a locus for the
 centroid the latter is its point perpendic
 ularly under the point of suspension. The
 same method can be applied to solids, for
 instance to wooden models suspended on
 threads which are held to the solids by

 Fig. 10. Experiment to find the centroid of a cardboard-area,

 placed in horizontal position on one side of
 the ruler and the duplicate is hung from a
 thread on the other side of the ruler. By
 placing this thread closer to or further
 away from the fulcrum its position can be
 determined in which the two cardboards
 will be in equilibrium. The centroid of the
 horizontal piece of cardboard is located at
 the same distance d from the balancing
 edge as the thread on which the duplicate
 is suspended. Therefore a straight line
 drawn on the cardboard at a distance d
 from the balancing edge is a locus of the
 centroid. By changing the position of the
 cardboard which lies horizontally on the
 ruler and repeating the experiment a
 second locus for the centroid will be ob
 tained. The point of intersection of the
 two loci is the centroid.

 An experiment which demonstrates the
 position of centroids for areas which have

 strips of scotch tape. Figure 11 shows the
 positions of centroids for areas and solids.
 The centroid divides the axis in certain
 ratios, as J for a rectangle, prism or
 cylinder, | for a triangle or a paraboloid, |
 for a pyramid or a cone, ? for a parabola
 segment and f for a hemisphere. For the
 semi-circle the constant appears in the
 ratio which is 4/37 . Those ratios are ob
 tained through the calculus.
 Another experiment (Figure 12) shows

 the balancing of a line. A wire is bent in a
 broken line composed of six straight line
 segments. The wire will stay in equilibrium
 with the first and last segment in hori
 zontal position when it is suspended or
 supported at the point C. The figure
 also shows the construction of point C
 by the methods of graphic statics using
 a "force and equilibrium polygon." At
 the middle point of each segment are
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 A  7!\

 Vi  u
 Fig. 11. Suspending of areas and solids in horizontal position.

 Ratios of the positions of the centroids.

 drawn arrows representing the forces of
 gravity. The lengths of the arrows are
 proportional to the lengths of the seg
 ments. In Figure 12 each arrow has half
 the length of a segment. The same lengths
 are transferred to the force polygon (right
 diagram of Figure 12). The end points of

 all the segments are connected \vith a
 point that may be chosen at will. From
 these lines the equilibrium polygon is ob
 tained, which is drawn between the verti
 cal lines dropped from the six arrows.
 Between the vertical lines of 1 and 2 a
 parallel to the line in the force polygon

 Fig. 12. Balancing of a broken line.
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 Fig. 13. Parallelogram of forces combining two concurrent forces.

 connecting with the point between the
 segments 1 and 2 is drawn. Then a second
 parallel line is drawn from the end of the
 first one between the verticals 2 and 3,
 parallel to the line connecting with the
 point between the segments 2 and 3. So
 one continues until the last vertical is
 reached. Then from the end point of the
 last parallel a line is drawn parallel to the
 connection of with the end of segment 6
 and from the beginning of the equilibrium
 polygon a line parallel to the connecting
 line from to the top of segment 1. From
 the point of intersection of these last two
 lines the vertical line which is shown in the

 figure in dots and dashes is drawn upwards
 and determines C. In this procedure three
 kinds of constructions are contained in a
 condensed form.
 The first is the construction of a paral

 lelogram of forces which combines two
 forces (Fi and F2 in Figure 13) acting on an
 object at a point A. The resultant force R
 is obtained, both in its size and direction,
 as the diagonal of a parallelogram of forces.
 A force R of the same strength but acting
 on A in the apposite direction balances the
 forces Fi and F2 and keeps the object in
 equilibrium (Figure 13, right diagram).

 A second construction combines two
 forces which act on two different points
 (Force Fi acting on point A and Force F2

 on point which both lie on a rectangular
 board drawn in Figure 14). The construc
 tion proceeds by extending the arrows of
 the given forces backwards until they
 intersect. At the point of intersection C the
 parallelogram of forces is drawn which
 yields the resultant R. A force R equal in
 strength to the resultant R but acting in
 the opposite direction on any point C
 along the diagonal of the parallelogram of
 forces will keep the board in equilibrium
 (Figure 14, right diagram).
 The construction of Figure 14 can be

 carried out for any two forces except for
 parallel forces. But cases of parallel forces
 occur especially frequently as they include
 the forces of gravity. Parallel forces can be
 handled through the trick of adding an
 arbitrarily chosen pair of equal opposite
 forces. The procedure is shown in Figure
 15, left diagram. The given forces are F\
 acting on point A and F2 acting on point
 B. The additional pair of forces consists of
 Gi and G2. First Fi and Gi are combined in
 a parallelogram of forces and their re
 sultant is ?i. Then Ri and F2 are combined
 as non-concurrent forces and their re
 sultant is R2. Finally R2 and G2 are com
 bined as non-concurrent forces and their
 resultant R is directed perpendicularly
 downwards, its length being equal to the
 sum of the lengths of the arrows Fi and F2.

 Fig. 14. Parallelogram of forces for two non-concurrent forces.
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 Fig. 15. Resultant of two parallel forces.

 A force R of the same strength as R but
 with the opposite direction acting on the
 same point as R restores the equilibrium.
 In the right diagram the forces Fi and F2
 are interpreted as weights suspended on a
 ruler. The ruler stays in equilibrium when
 supported at a point with the same dis
 tances from the given forces as R.

 Repeated application of this construc
 tion solves the problem to find the centroid
 of the wire in Figures 12 and 16. The forces
 of gravity which apply to the 6 sections of
 the wire are denoted simply as 1, 2, 3, 4, 5
 and 6. The additional pair of forces is G\
 and G2. First 1 and Gi are combined in a

 parallelogram of forces which yields a
 resultant. Then this resultant is further
 combined with force 2 and so forth until
 one arrives at the last resultant which is
 finally combined with G2. Thus the posi
 tion of the ultimate resultant is reached.
 On the right hand of this diagram the force
 polygon of Figure 12 is repeated. In it the
 lengths of the segments 1 to 6 equal those
 of the arrows 1 to 6. The position of the
 point has been so chosen that PA equals
 G?. A systematic comparison of the force
 polygon with the diagram on the left side
 of Figure 16 will show that the force
 polygon is but a condensation of this

 Fig. 16. Derivation of the construction of the centroid by force and equilibrium polygons.
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 3 5
 Fig. 17. Construction of the centroid of an area through force and equilibrium polygons.

 diagram and is composed of triangles
 which are congruent to those which appear
 in' the parallelograms of forces. Thus the
 construction of the force and equilibrium
 polygons of Figures 12 and 16 derives itself
 from the basic constructions of the Figures
 13 to 15.

 Finally the construction of force and
 equilibrium polygons can be applied to an
 irregular polygon, as in Figure 17. The
 diagonals drawn from one vertex of the
 polygon divide it into triangles. For each
 triangle the centroid has been obtained
 (through medians not shown in the dia
 gram). From the Centroids of the triangles
 arrows are drawn representing the forces
 of gravity whose lengths are proportional
 to the areas of the triangles. From the
 lengths of these arrows the force polygon
 has been set up and through it the
 equilibrium polygon which is a locus

 of the centroid (See dots and dashes).
 Imagining then that the given area with
 the diagram be turned 90? so that the
 parallel lines which are drawn from the
 centroids of the triangles to the right come
 into perpendicular position, the construc
 tion of the force and equilibrium polygon
 can be repeated once more. Thus a second
 line shown in dots and dashes is obtained
 which is also a locus for the centroid of the
 area. The point of intersection of the 2
 loci is the final centroid C. The same con
 struction can be carried out without an
 excessive amount of lines to find the
 centroid of any given polygon. Its results
 will be the same whatever vertex may
 have been chosen to draw the diagonals
 across the polygon or whatever decision
 has been made to divide the area into
 triangles. The centroid thus obtained can
 be checked by experiment.
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