From: De Villiers, M. (1994; revised 1996). Some Adventures in Euclidean Geometry, Univ. of Durban-Westville (now Univ. of KwaZulu-Natal), pp. 192-193.

Theorem: The perpendicular bisectors of the sides of a circum quad (a quadrilateral circumscribed around a circle) form another circum quad.

Proof

We shall use the notation given in the figure above and also the following: $\mathrm{AB}=a, \mathrm{BC}=b, \mathrm{CD}=c, \mathrm{DA}=d, t_{A}$ is the tangent from A to the incircle, r is the radius of the incircle. We shall assume that $r=1$. We now have:
$M D=-\frac{d}{2 \cos D}, M W=\frac{c}{2}-\frac{d}{2 \cos D}$,
$F W=M W \cot \left(180^{\circ}-D\right)=\frac{d}{2 \sin D}-\frac{c}{2} \cot D$.

Similarly, $F X=\frac{c}{2 \sin D}-\frac{d}{2} \cot D$ and hence:

$$
\begin{aligned}
2(F X-F W) & =\frac{c-d}{\sin D}+(c-d) \cot D \\
& =(c-d) \frac{1+\cos D}{\sin D} \\
& =(c-d) \cot \frac{D}{2} \\
& =(c-d) \frac{t_{D}}{r} \\
& =(c-d) t_{D}
\end{aligned}
$$

Similarly for 2(HZ-HY), 2(EY-EX) and 2(GW-GZ). We now have to check that the sum of the opposite sides are equal, or alternatively that EF-EH+HG$\mathrm{GF}=0$, i.e. that (FX-EX)-(HY-EY)+(HZ-GZ)-(FW-GW)=0 or 2(FXFW $)+2(\mathrm{HZ}-\mathrm{HY})+2(\mathrm{EY}-\mathrm{EX})+2(\mathrm{GW}-\mathrm{GZ})=0$. In view of the previous results, the last equality is equivalent to:
(1) ... $(c-d) t_{D}+(d-a) t_{A}+(a-b) t_{B}+(b-c) t_{C}=0$.

Since $c-d=b-a$ and $d-a=c-b$, equation (1) is equivalent to:
(2)... $(c-d)\left(t_{D}-t_{B}\right)+(d-a)\left(t_{A}-t_{C}\right)=0$.

But $c-d=\left(t_{C}+t_{D}\right)-\left(t_{D}+t_{A}\right)=t_{C}-t_{A}$ and similarly $d-a=t_{D}-t_{B}$.

Therefore (2) is equivalent to $\left(t_{C}-t_{A}\right)\left(t_{D}-t_{B}\right)+\left(t_{D}-t_{B}\right)\left(t_{A}-t_{C}\right)=0$, which is an identity and completes the proof.

Note: Download a Zipped Sketchpad sketch directly from

