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Abstract. In a cyclic hexagon the main diagonals are concurrent if and only
if the product of three mutually non-consecutive sides equals the product of the
other three sides. We present here a vast generalization of this result to (closed)
hexagonal paths (Sine-Concurrency Theorem), which also admits a collinearity
version (Sine-Collinearity Theorem). The two theorems easily produce a proof of
Desargues’ Theorem. Henceforth we recover all the known facts about Fermat-
Torricelli points, Napoleon points, or Kiepert points, obtained in connection with
erecting three new triangles on the sides of a given triangle and then joining
appropriate vertices. We also infer trigonometric proofs for two classical hexagon
results of Pascal and Brianchon.
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1. Two Sine-Theorems

Let A1A2A3A4A5A6 be a cyclic hexagon. A lesser known but nonetheless beautiful result
states that the three main diagonals A1A4, A2A5, and A3A6 are concurrent if and only if
A1A2 ·A3A4 ·A5A6 = A2A3 ·A4A5 ·A6A1 [4]. Is there an equivalent of this result, holding for
non-cyclic convex hexagons? The answer is yes, and it turns out to be true in much greater
generality, for hexagons not necessarily convex, and not even simple, when viewed as closed
(polygonal) curves. We will call such curves hexagonal paths. The only restriction in the
hexagonal path is that the vertices be six mutually distinct points in general position: That is,
no two lines through vertices of the hexagon may be identical or parallel (in particular, no
three distinct vertices may be collinear). Even this hypothesis on vertices being in general
position can be relaxed, see the Note following the Sine-Collinearity Theorem.

Our main results will then express the concurrency of the three main diagonal lines,
←−→
A1A4,←−→

A2A5, and
←−→
A3A6, in terms of the measures of nine oriented angles, and it will also express the

collinearity of the intersecting points of pairs of corresponding sides in two triangles, 4A1A2A3

and 4A4A5A6, in terms of those nine angles.
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In order not to be distracted by orientation issues, we state our results only when the
hexagonal path is convex and the above vertex listing is consistent with traversing the sides of
the hexagon in a counterclockwise manner. Fixing one of the two core internal triangles in the
hexagon, say 4A1A3A5 (the other being 4A2A4A6), denote by α, β, and γ, the measures of
its angles A1, A3, and A5, respectively. Denote also by α− and β+ the measures of the angles
A1 and A3, respectively, in 4A1A2A3. Similarly, we have β−, γ+, and γ−, α+ (see Figure 1).
Then the following holds true:

Figure 1: A convex hexagon with concurrent main diagonals, and the nine relevant angles

Sine-Concurrency Theorem. Let A1A2A3A4A5A6 be a convex hexagon. With the above
notations, the three main diagonals in the hexagon, A1A4, A2A5, and A3A6, are concurrent if
and only if

sin(α + α+) sin(β + β+) sin(γ + γ+) sinα− sin β− sin γ−

= sin(α + α−) sin(β + β−) sin(γ + γ−) sinα+ sin β+ sin γ+
(1)

Note. For non-convex hexagonal paths A1A2A3A4A5A6 the theorem still holds true, however
one needs to be more careful about the measures of the angles involved. The key here is the

concept of oriented angle. For a proper angle, say B̂AC, with vertex A and rays
−→
AB and

−→
AC we

define its oriented measure, m(B̂AC) = θ, as being the (real) angle θ (in radians), 0 < |θ| < π,

required to rotate (about vertex A) the ray
−→
AB over the ray

−→
AC. The measure will be positive

if this rotation is counterclockwise, and negative if it is clockwise. So for oriented angles,

m(ĈAB) = −m(B̂AC). Then, just as in the Sine-Concurrency Theorem, the main diagonal

lines
←−→
A1A4,

←−→
A2A5, and

←−→
A3A6 will be concurrent if and only if Equation (1) holds, where

α = m(Â3A1A5), β = m(Â5A3A1), γ = m(Â1A5A3), α
− = m(Â2A1A3), α

+ = m(Â5A1A6),

β− = m(Â4A3A5), β
+ = m(Â1A3A2), γ

− = m(Â6A5A1), and γ+ = m(Â3A5A4). Notice that
the same letter angle measures correspond to angles sharing the same vertex. For a more
unorthodox implementation of these notations, see Figure 2.

To the end of proving the Sine-Concurrency Theorem and its companion, the Sine-
Collinearity Theorem, we take a complex number approach. Identifying the Euclidean plane E
of the hexagonal path with the complex number system C any point P ∈ E will have an affix
p ∈ C. Although in the figures we sometimes indicate both points and affixes, as in P (p), in
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Figure 2: A non-convex, non-simple, hexagonal path in general position with concurrent
main diagonals, and the nine relevant oriented angles.

all the other considerations the points and affixes will be identified and used interchangeably,
as in ‘the line determined by the points p, q ∈ C ’.

We recall now some key facts in complex Euclidean geometry. The reader can prove them
easily, or approach them via the references [1, 2].

For two (distinct) points p1 6= p2, the unique line determined by them, ←→p1p2, has the
property that

z ∈ C belongs to ←→p1p2 ⇐⇒ det

 z z 1
p1 p1 1
p2 p2 1

 = 0. (2)

Consequently, three points p1, p2 and p3 will form the vertices of a (non-degenerate) triangle if
and only if

det

p1 p1 1
p2 p2 1
p3 p3 1

 6= 0.

Two lines as above, say ←→p1q1 and ←→p2q2 are non-parallel, and therefore intersect at an unique

point, if and only if det

[
p1 − q1 p1 − q1
p2 − q2 p2 − q2

]
6= 0. Moreover, via (2), the intersection point of

the lines is

←→p1q1 ∩←→p2q2 = −
det

[
p1 − q1 p1q1 − p1q1
p2 − q2 p2q2 − p2q2

]
det

[
p1 − q1 p1 − q1
p2 − q2 p2 − q2

] . (3)

Finally, any affine transformation C 3 z 7→ az + b ∈ C, a, b ∈ C, |a| = 1, a 6= 1, can be viewed
as a proper rotation, Rθ, z0(z), of (oriented) angle θ ∈ R \ 2πZ and center z0 ∈ C, via the
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identifications a = eiθ and z0 =
b

1− a
, i.e.,

Rθ, z0(z) = eiθz + z0
(
1− eiθ

)
= az + b. (4)

Noticing that the center of rotation is the fixed point of the affine transformation, it follows
that given a non-degenerate triangle, 4p1qp2, with oriented angles θ1 = m(q̂p1p2) at p1 and
θ2 = m(p̂1p2q) at p2, the vertex q appears as the fixed point of a composition of two rotations,
more exactly,

q = fix (R2θ2, p2 ◦R2θ1, p1) =
(1−e2iθ2)p2+e2iθ2(1−e2iθ1)p1

1−e2i(θ1+θ2) = s p1 + (1− s)p2,

where s =
e2iθ2

(
1− e2iθ1

)
1− e2i(θ1+θ2)

.
(5)

Lemma. a) Let p1 6= q1, p2 6= q2, p3 6= q3 be six points such that two of the three lines ←→p1q1,←→p2q2, and ←→p3q3, are non-identical and non-parallel. Then these three lines are concurrent if
and only if

det

p1 − q1 p1 − q1 p1q1 − p1q1
p2 − q2 p2 − q2 p2q2 − p2q2
p3 − q3 p3 − q3 p3q3 − p3q3

 = 0. (6)

b) Let p1, p2, p3, s1, s2, s3, and t1, t2, t3, be nine complex numbers such that the first three,
p1, p2, p3, are non-zero. Set

q1 := s1p2 + (1− s1)p3, q2 := s2p3 + (1− s2)p1, q3 := s3p1 + (1− s3)p2, and

r1 := t1
1

p2
+ (1− t1)

1

p3
, r2 := t2

1

p3
+ (1− t2)

1

p1
, r3 := t3

1

p1
+ (1− t3)

1

p2
.

Then

det


p1 − q1

1

p1
− r1 p1r1 −

1

p1
q1

p2 − q2
1

p2
− r2 p2r2 −

1

p2
q2

p3 − q3
1

p3
− r3 p3r3 −

1

p3
q3

 =
(p1 − p2)(p2 − p3)(p3 − p1)

p21p
2
2p

2
3

(ξ − η), (7)

where

ξ = (t1p1 − s1p2)(t2p2 − s2p3)(t3p3 − s3p1),
η = ((1− s2)p1 − (1− t2)p2) ((1− s3)p2 − (1− t3)p3) ((1− s1)p3 − (1− t1)p1) .

(8)

Proof. a) Denote by A the 3× 3 complex matrix appearing in Equation (6). Assume that the

three lines are concurrent at, say, v ∈ C. Then, by Equation (2), the point z0 =

 −vv
1

 ∈ C3

is a non-trivial solution of the homogeneous linear complex system A z = 0. Consequently,
Equation (6) holds.

Conversely, if Equation (6) holds then the homogeneous linear system A z = 0 has non-
trivial solutions. More precisely, since by the non-parallelism hypothesis the matrix A has

rank 2, the solution set of the system is one-dimensional. Let

 u
v
w

 ∈ C3 be a non-zero

vector spanning this solution set. Then w 6= 0 since otherwise, again by the non-parallelism
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hypothesis, the system cannot have non-trivial solutions. As a result, there is only one solution

of the system A z = 0 of type

 uv
1

. However, then it is easy to see that

 −v−u
1

 is also solution,

and so u = −v. In conclusion, by Equation (2) the three lines are concurrent at v ∈ C.

b) The determinant appearing in Equation (6) is in fact a specialization of that appearing
in Equation (7), when |p1| = |p2| = |p3| = 1, and q1, q2, q3, are given by suitable linear
combinations of type (5).

The identity (7) is not surprising, given the circular symmetries of the matrix involved. It
probably can afford a more elegant proof than the one outlined below. While it can be easily
checked by a brute force determinant expansion and lengthy algebraic manipulations, it is
worthwhile explaining how one can arrive to the right hand side expression in (7).

Notice first that p21p
3
2p

2
3 det(B), where B is the matrix appearing in (7), is a homogeneous

polynomial of degree 6 in p1, p2, p3. Also, the elements of the first row, and subsequently the
other two rows by circular permutations, can be expressed as

p1 − q1 = s1(p1 − p2)− (1− s1)(p3 − p1),
1

p1
− r1 = − t1p3

p1p2p3
(p1 − p2) +

(1− t1)p2
p1p2p3

(p3 − p1),

p1r1 −
1

p1
q1 =

s1p2p3 + t1p3p1
p1p2p3

(p1 − p2)−
(1− s1)p2p3 + (1− t1)p1p2

p1p2p3
(p3 − p1).

(9)

The expressions in (9) suggest that p21p
3
2p

2
3 det(B) should be divisible by (p1−p2)(p2−p3)(p3−p1),

and also that a homogeneity of degree 3 with respect to si, ti, (1− si), (1− ti), i = 1, 2, 3, be
present. Indeed, when p1 = p2, det(B) vanishes since then

B = (p3 − p1)


−(1− s1)

1− t1
p3p1

− (1− s1)p3 + (1− t1)p1
p3p1

−s2
t2
p3p1

−s2p3 + t2p1
p3p1

1 − 1

p3p1

p3 + p1
p3p1

 ,
and above the third column is obviously a linear combination of the first two columns.

The divisibility of p21p
3
2p

2
3 det(B) by (p1− p2)(p2− p3)(p3− p1) shows that in the expansion

of det(B), when the elements of B are expressed as in (9), si-containing terms multiplied by
(1− tj)-containing terms cancel out, and this and the degree 3 homogeneity mentioned above
lead to the expressions of ξ and η.

Proof of the Theorem. There is no loss of generality in assuming that the circumcenter of
4A1A3A5 has affix 0, and the affixes p1 of A1, p2 of A3, and p3 of A5 are such that |p1| =
|p2| = |p3| = 1. In 4A1A2A3 the vertex A2 has afix q3 = fix (R2β+,p2 ◦R2α−, p1). Similarly, A4

has afix q1 = fix (R2γ+, p3 ◦R2β−, p2) and A6 has afix q2 = fix (R2α+, p1 ◦R2γ−, p3). By (5),

q1 = s1p2 + (1− s1)p3, where s1 =
e2iγ

+
(
1− e2iβ−

)
1− e2i(β−+γ+)

,

q2 = s2p3 + (1− s2)p1, where s2 =
e2iα

+
(
1− e2iγ−

)
1− e2i(γ−+α+)

,

q3 = s3p1 + (1− s3)p2, where s3 =
e2iβ

+
(
1− e2iα−

)
1− e2i(γ−+α+)

.

(10)
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According to part a) of the Lemma the three segments A1A4, A2A5, and A3A6 are concurrent
if and only if the determinant in Equation (6) vanishes, for the choices of p1, p2, p3, and q1, q2,

q3 given above. Since p1 =
1

p1
, p2 =

1

p2
, p3 =

1

p3
, we can use part b) of the Lemma to evaluate

the determinant in (6). It equals the determinant in (7) for the values of s1, s2, s3 already
indicated above in Equations (10), and for

t1 = s1 =
1− e2iβ−

1− e2i(β−+γ+)
=

s1

e2iγ+
,

t2 = s2 =
1− e2iγ−

1− e2i(γ−+α+)
=

s2

e2iα+ ,

t3 = s3 =
1− e2iα−

1− e2i(α−+β+)
=

s3

e2iβ+ .

(11)

Clearly, from (10) and (11) we get

1− s1 =
1− e2iγ+

1− e2i(β−+γ+)
, 1− t1 = e2iβ

−
(1− s1) ,

1− s2 =
1− e2iα+

1− e2i(γ−+α+)
, 1− t2 = e2iγ

−
(1− s2) ,

1− s3 =
1− e2iβ+

1− e2i(α−+β+)
, 1− t3 = e2iα

−
(1− s3) .

(12)

The last piece of information required to finish the proof of the theorem concerns the angles
α, β, and γ in 4A1A3A5. It is not hard to see that they are related to p1, p2, and p3 via the
formulae

p2 = e2iγp1, p3 = e2iαp2, p1 = e2iβp3. (13)

From (11) and (13) it follows that

t1p1 − s1p2 = t1

(
1− e2i(γ+γ+)

)
p1,

t2p2 − s2p3 = t2

(
1− e2i(α+α+)

)
p2,

t3p3 − s3p1 = t3

(
1− e2i(β+β+)

)
p3.

(14)

From (12) and (13) it follows that

(1− s2)p1 − (1− t2)p2 = (1− s2)
(

1− e2i(γ+γ−)
)
p1,

(1− s3)p2 − (1− t3)p3 = (1− s3)
(

1− e2i(α+α−)
)
p2,

(1− s1)p3 − (1− t1)p1 = (1− s1)
(

1− e2i(β+β+)
)
p3.

(15)

Consequently,

ξ = (t1p1 − s1p2)(t2p2 − s2p3)(t3p3 − s3p1)

= t1t2t3

(
1− e2i(α+α+)

)(
1− e2i(β+β+)

)(
1− e2i(γ+γ+)

)
p1p2p3,

and

η = ((1− s2)p1 − (1− t2)p2) ((1− s3)p2 − (1− t3)p3) ((1− s1)p3 − (1− t1)p1)

= (1− s1)(1− s2)(1− s3)
(

1− e2i(α+α−)
)(

1− e2i(β+β−)
)(

1− e2i(γ+γ−)
)
p1p2p3,
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In conclusion, ξ = η is equivalent, via (11) and (12), to(
1− e2iα−

)(
1− e2iβ−

)(
1− e2iγ−

)(
1− e2i(α+α+)

)(
1− e2i(β+β+)

)(
1− e2i(γ+γ+)

)
=
(

1− e2iα+
)(

1− e2iβ+
)(

1− e2iγ+
)(

1− e2i(α+α−)
)(

1− e2i(β+β−)
)(

1− e2i(γ+γ−)
)
,

which is easily seen to be equivalent to (1). The proof of the Sine-Concurrency Theorem is
complete.

Sine-Collinearity Theorem. Given a convex hexagon A1A2A3A4A5A6 with vertices in gen-
eral position, consider the three intersecting points of corresponding sides in 4A1A2A3 and

4A4A5A6. More precisely, let lines
←−→
A1A2 and

←−→
A4A5 intersect at M1, lines

←−→
A2A3 and

←−→
A5A6

intersect at M2, and lines
←−→
A3A1 and

←−→
A6A4 intersect at M3 (cf. Figure 3 ). Then the points

M1, M2, and M3 are collinear if and only if for the angles α, α+, α−, β, β+, β−, and γ, γ+,
γ− associated as before in connection with 4A1A3A5 we have (Equation (1) )

sin(α + α+) sin(β + β+) sin(γ + γ+) sinα− sin β− sin γ−

= sin(α + α−) sin(β + β−) sin(γ + γ−) sinα+ sin β+ sin γ+
(16)

Proof. As the proof mimics that of the Sine-Concurrency Theorem we provide only its basic
skeleton. Let m1, m2, and m3 be the affixes of M1, M2, and M3, respectively. Then, by (3)

m1 = ←→p1q3 ∩←→p3q1 = −
det

[
p1 − q3 p1q3 − p1q3
p3 − q1 p3q1 − p3q1

]
det

[
p1 − q3 p1 − q3
p3 − q1 p3 − q1

] ,

m2 = ←→p2q3 ∩←→p3q2 = −
det

[
p2 − q3 p2q3 − p2q3
p3 − q2 p3q2 − p3q2

]
det

[
p2 − q3 p2 − q3
p3 − q2 p3 − q2

] ,

m3 = ←→p1p2 ∩←→q1q2 = −
det

[
p1 − p2 p1p2 − p1p2
q1 − q2 q1q2 − q1q2

]
det

[
p1 − p2 p1 − p2
q1 − q2 q1 − q2

] ,

(17)

and so

m1 = −
det

[
p1 − q3 p1q3 − p1q3
p3 − q1 p3q1 − p3q1

]
det

[
p1 − q3 p1 − q3
p3 − q1 p3 − q1

] ,

m2 = −
det

[
p2 − q3 p2q3 − p2q3
p3 − q2 p3q2 − p3q2

]
det

[
p2 − q3 p2 − q3
p3 − q2 p3 − q2

] ,

m3 = −
det

[
p1 − p2 p1p2 − p1p2
q1 − q2 q1q2 − q1q2

]
det

[
p1 − p2 p1 − p2
q1 − q2 q1 − q2

] .

(18)
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Figure 3: A convex hexagon exhibiting collinearity and the nine relevant angles,
as in the Sine-Collinearity Theorem

M1, M2, and M3 are then collinear if and only if

det

m1 m1 1
m2 m2 1
m3 m3 1

 = 0 . (19)

Make now the substitutions

pi −→
1

pi
, qi −→ ri,

in mi and mi, i = 1, 2, 3. If as a result of the substitutions we let mi −→ ui and mi −→ vi
for i = 1, 2, 3 , by further setting, as in the Lemma, qi := sipi+1 + (1 − si)pi+2 and ri :=

ti
1

pi+1
+ (1− ti)

1

pi+2
, i = 1, 2, 3 , the following identity holds true:

det

p1 − q3 1
p1
− r3

p3 − q1
1
p3
− r1

 det

p2 − q3 1
p2
− r3

p3 − q2
1
p3
− r2

 det

[
p1 − p2

1
p1
− 1
p2

q1 − q2 r1 − r2

]

det

p3 − q2 1
p3
− r2

p3 − q1
1
p3
− r1


det

u1 v1 1
u2 v2 1
u3 v3 1



=
(p1 − p2)3(p2 − p3)(p3 − p1)(s3 − t3)

p31p
3
2p

3
3

(η − ξ),

(20)

where ξ and η are those given by (8). Since in (20) the various determinants are non-vanishing,
under the further hypothesis |pi| = 1 and the specializations of si, and ti for i = 1, 2, 3 given
by (10) and (11), we see that

det

m1 m1 1
m2 m2 1
m3 m3 1

 = det

u1 v1 1
u2 v2 1
u3 v3 1

 = 0 ⇐⇒ ξ = η.

This proves the Sine-Collinearity Theorem.
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Figure 4: A nonstandard hexagonal implementation of the equivalence
between concurrency and collinearity in Desargues’ Theorem

Note. Although the Sine-Theorems were stated for convex hexagons the above proofs are
valid, as already mentioned, for arbitrary hexagonal paths with vertices in general position and
oriented angles. In fact, even the requirement that the hexagon vertices be in general position
can be removed if the usual convention that parallel lines meet at infinity is allowed. Only the
algebraic limitations of our proof prevented us from stating the result at this level of generality.
However, it is clear how to get this more general result from ours by a limiting argument. The
natural habitat for matters involving concurrency and collinearity being projective and not
affine geometry, all this is normal.

2. Consequences of the Sine-Theorems

We conclude this paper with few applications to the two Sine-Theorems.

Corollary.
a) Desargues’ Theorem – Indirect Trigonometric Proof. Given a convex hexagon A1A2A3

A4A5A6 with vertices in general position, let M1, M2, and M3 be the three intersecting points
of the corresponding sides in 4A1A2A3 and 4A4A5A6. Then the main diagonals in the
hexagon, A1A4, A2A5, and A3A6 are concurrent if and only if M1, M2, and M3 are collinear
(cf. Figure 4 ).

b) Assume that on the sides of a given triangle, 4A1A3A5, with angles α, β, and γ, three new
triangles, 4A1A2A3, 4A3A4A5, and 4A5A6A1 are erected, with oriented angles, α− and β+,
β− and γ+, γ− and α+ respectively, as described after the statement of the Sine-Concurrency
Theorem. If α− = α+, β− = β+, and γ− = γ+ then the main diagonal lines of the hexagonal
path A1A2A3A4A5A6 are concurrent.

c) Let A1A2A3A4A5A6 be a cyclic hexagon. Then its main diagonals are concurrent if and
only if A1A2 · A3A4 · A5A6 = A2A3 · A4A5 · A6A1.

d) Let B1B2B3B4B5B6 be a cyclic hexagon. On its sides erect exterior triangles by extending
these sides, and denote the additional vertices of these triangles by A1, A2, A3, A4, A5, and
A6. Then the main diagonals in the convex hexagon A1A2A3A4A5A6 are concurrent.
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Proof. a) This is a standard instance of transitivity in mathematics. The concurrency, at O,
of the main diagonals A1A4, A2A5 and A3A6, respectively the collinearity of M1, M2, and M3,
is equivalent via the Sine-Concurrency Theorem, respectively the Sine-Collinearity Theorem,
to the same trigonometric identity (1), involving the nine angles α, α+, α−, β, β+, β−, and
γ, γ+, γ− associated as before in connection with 4A1A3A5.

Notice that there are three more hexagons with the same vertex set and the same main diag-
onals as A1A2A3A4A5A6, for which Desargues’ Theorem holds true, namely A1A2A6A4A5A3,
A1A5A3A4A2A6, and A1A5A6A4A2A3. Evidently, they generate different sets of collinear
points.

b) is a result of de Villiers [8]. Its proof is an obvious consequence of the Sine-Concurrency
Theorem, as the given hypotheses make the content of Equation (1) plain. Sub-particular
cases reveal important concurrency points:

– A point on the Kiepert hyperbola [9], if α+ = α− = β+ = β− = γ+ = γ− = θ,
−π

2
< θ <

π

2
.

– The first/second Fermat-Torricelli point [3], if α+ = α− = β+ = β− = γ+ = γ− =
+
π

3
/− π

3
.

– The first/second Napoleon point [6], if α+ = α− = β+ = β− = γ+ = γ− = +
π

6
/− π

6
.

– The centroid of 4A1A3A5, in the limiting case α+ = α− = β+ = β− = γ+ = γ− = 0.

– The orthocenter of 4A1A3A5, in the limiting case α+ = α− = β+ = β− = γ+ = γ− =
π

2
.

c) is a result of Cartensen [4]. To the end of proving it we rely on the notations of Figure 1.
To show that Equation (1) is equivalent to the metric property given by c) we employ the Law
of Sines in various triangles with vertices among the vertices of the hexagon. By hypothesis,
all these triangles have the same circumcircle, of radius, say, R. For instance, in 4A1A3A6,
sin(α+ α+)

A3A6
=

1

2R
and in4A3A5A6,

sin(γ + γ−)

A3A6
=

1

2R
, give sin(α+α+) = sin(γ+γ−). Similarly,

sin(β+β+) = sin(α+α−) and sin(γ+γ+) = sin(β+β−). Therefore, Equation (1) is equivalent
to sinα+ sin β+ sin γ+ = sinα− sin β− sin γ−.

Now, in 4A1A2A3,
sinβ+

A1A2
=

sinα−

A2A3
=

1

2R
. Similarly,

sin γ+

A3A4
=

sinβ−

A4A5
=

1

2R
and

sinα+

A5A6
=

sin γ−

A6A1
=

1

2R
. They all lead to the equivalence of sinα+ sin β+ sin γ+ = sinα− sin β− sin γ− to

A1A2 · A3A4 · A5A6 = A2A3 · A4A5 · A6A1.

Figure 5: An example of a cyclic hexagon with concurrent main diagonals
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Here are now two natural implementations of c).

c1) Let A1, A2, A3, A4, and A5 be five distinct points, distributed in a counterclockwise

manner on a given circle. If
>
A5A1 is the counterclockwise oriented arc of the circle (with initial

point A5 and terminal point A1), the continuous function

f :
>
A5A1 → R, f(A) = A1A2 · A3A4 · A5A− A2A3 · A4A5 · AA1 ,

is strictly increasing as A advances along the arc, f(A5) < 0, and f(A1) > 0. By the

Intermediate Value Property there is an unique point A = A6 ∈
>
A5A1 such that the main

diagonals in the cyclic hexagon A1A2A3A4A5A6 are concurrent. Clearly, A6 is the intersection

point of the arc
>
A5A1 with the line

←→
A3I, where I is the intersection point of the line segments

A1A4 and A2A5.

c2) Let A be a point exterior to a given circle, and let A1 and A4 be the points where the two
tangents to the circle through the point A intersect the circle. Let also two secants through
A intersect the circle at A2 and A6, respectively A3 and A5 (cf. Figure 5). Then the main
diagonals in the cyclic hexagon A1A2A3A4A5A6 are concurrent.

This can be seen by using similarity in three pairs of triangles. For instance 4AA1A2 ∼
4AA6A1 gives

A1A2

A6A1
=

AA1

AA6
=

AA2

AA1
, which implies

(A1A2)
2

(A6A1)2
=

AA2

AA6
. Similarly,

A3A4

A4A5
=

AA3

AA4
=

AA4

AA5
gives

(A3A4)
2

(A4A5)2
=

AA3

AA5
and

A5A6

A2A3
=

AA5

AA2
=

AA6

AA3
gives

(A5A6)
2

(A2A3)2
=

AA5 ·AA6

AA2 ·AA3
. Therefore,

(A1A2)
2

(A6A1)2
(A3A4)

2

(A4A1)5
(A5A6)

2

(A2A3)2
= 1, which proves the validity of c2).

c2) also holds true in the more general case when the circle is replaced by an ellipse. This
follows easily from the circle case since the plane transformation which projects an ellipse
onto its associated great circle preserves lines. In fact, the elliptic c2) case can be viewed as a
variant of Brianchon’s Theorem [5]. We let the reader sort out the details with the help of
Figure 6.

d) Referring to Figure 7, by the Sine-Concurrency Theorem we have to establish the validity
of Equation (1) for the choices of angles indicated. The Law of Sines applied to 4A1A2A3

Figure 6: The concurrency point of the main diagonals in the Brianchon hexagon
B1B2B3B4B5B6 is the same as that in the elliptic c2) case
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Figure 7: The main diagonals in the convex hexagon A1A2A3A4A5A6 are always
concurrent, while those in the cyclic hexagon B1B2B3B4B5B6 may not be

gives
sinα−

sinβ+
=

A2A3

A1A2
. Similarly, we have

sinβ−

sin γ+
=
A4A5

A3A4
and

sin γ−

sinα+
=
A6A1

A5A6
. (21)

Combining now three applications of the Law of Sines respectively to 4A6A1B6, 4A2B1B6

and 4A3A4B1 we have
sin(α+ α+)

sin(β + β−)
=

A6B6

A6A1

A2B1

A2B6

A3A4

A4B1
and similarly,

Figure 8: Pascal’s Theorem for the cyclic hexagon B1B2B3B4B5B6 is an example of a
Sine-Collinearity Theorem applied to the non-convex hexagonal path A1A3A5A4A6A2
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sin(β + β+)

sin(γ + γ−)
=
A2B2

A2A3

A4B3

A4B2

A5A6

A6B3

and
sin(γ + γ+)

sin(α+ α−)
=
A4B4

A4A5

A6B5

A6B4

A1A2

A2B5
. (22)

Multiplying together Equations (21) and (22) and simplifying yields now

sin(α+ α+) sin(β + β+) sin(γ + γ+) sinα− sinβ− sin γ−

sin(α+ α−) sin(β + β−) sin(γ + γ−) sinα+ sinβ+ sin γ+

=
A6B5 ·A6B6

A6B4 ·A6B3

A2B1 ·A2B2

A2B6 ·A2B5

A4B3 ·A4B4

A4B2 ·A4B1
.

(23)

However, each one of the three ratios contained on the right hand side of Equation (23) equals
1, due to the well-known invariance of the power of a point exterior to a circle.

A similar approach proves also the concurrency of the main diagonals in the convex
hexagon O1O2O3O4O5O6, with vertices the circumcenters of the triangles erected, e.g., O1 the
circumcenter of 4A6B5B4, etc. This is a result of Dao [7].

Referring now to Figure 8 we know by the above that the main diagonals in the convex
hexagon A1A2A3A4A5A6 are concurrent. Thus, so are the main diagonals of the hexagonal path
A1A3A5A4A6A2. As a result, Equation (1) holds for this hexagonal path and the nine oriented
angles associated to 4A1A5A6, and so the Sine-Collinearity Theorem applies. However, this
yields exactly Pascal’s Hexagon Theorem [10] for the cyclic hexagon B1B2B3B4B5B6, since

(Figure 8),
←−→
A1A3 =

←−→
B6B1,

←−→
A3A5 =

←−→
B2B3,

←−→
A5A1 =

←−→
B4B5,

←−→
A4A6 =

←−→
B3B4,

←−→
A6A2 =

←−→
B5B6, and

←−→
A2A4 =

←−→
B1B2. Of course we could have shortened the argument by applying Desargues’

Theorem a).
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