Solution: Concurrency and Euler line locus result WebSketchpad

(Refer to the Java sketch at: http://dynamicmathematicslearning.com/concurrency-euler-locus.html http://math.kennesaw.edu/~mdevilli/concurrency-euler-locus.html) Link on left no longer valid Note that triangle $D E F$ (or $D^{\prime} E^{\prime} F^{\prime}$) is homothetic to triangle $A B C$, and therefore homothetic also to the median triangle $K L M$; hence $D K, E L$ and $F M$ are concurrent in the centre of similarity between $D E F$ and $K L M$. The result is therefore merely a special case of the Euler line generalization below from De Villiers (2005). Since the locus of D is a straight line, it follows from the similarity that the locus of X and X^{\prime} is also a straight line, which obviously pass through O and G (e.g. when D respectively coincides with O and A). This explains why the locus falls on the Euler line.

Further Euler Line generalization

Given any triangle $A B C$ with midpoints of the sides X, Y and Z and three cevians concurrent in H as shown. With H as centre of similarity and scale factor $\frac{1}{k}$, construct triangle $L J K$ similar to $A B C$. Let N be the centre of similarity between $L J K$ and the median triangle $X Y Z$. Then H, N and G are collinear, and $H N=\frac{3}{k-1} N G$. A proof and additional background information can be found in my paper at http://mysite.mweb.co.za/residents/profmd/euler.pdf

Reference

http://dynamicmathematicslearning.com/euler.pdf

De Villiers, M. (2005). A generalization of the nine-point circle and Euler line. Pythagoras, 62, Dec, 31-35.

