Forum Geometricorum Volume 9 (2009) 271-274.

Ten Concurrent Euler Lines

Nikolai Ivanov Beluhov

Dedicated to Svetlozar Doichev

Abstract. Let F_1 and F_2 denote the Fermat-Toricelli points of a given triangle ABC. We prove that the Euler lines of the 10 triangles with vertices chosen from A, B, C, F_1, F_2 (three at a time) are concurrent at the centroid of triangle ABC.

Given a (positively oriented) triangle ABC, construct externally on its sides three equilateral triangles BCT_a , CAT_b , and ABT_c with centers N_a , N_b and N_c respectively (see Figure 1). As is well known, triangle $N_a N_b N_c$ is equilateral. We call this the first Napoleon triangle of ABC.

The same construction performed internally gives equilateral triangles BCT'_a , CAT'_b and ABT'_c with centers N'_a , N'_b , and N'_c respectively, leading to the second Napoleon triangle $N_a'N_b'N_c'$. The centers of both Napoleon triangles coincide with the centroid M of triangle ABC .

Publication Date: October 19, 2009. Communicating Editor: Paul Yiu.

The lines AT_a, BT_b and CT_c make equal pairwise angles, and meet together with the circumcircles of triangles BCT_a , CAT_b , and ABT_c at the first Fermat-Toricelli point F_1 . Denoting by ∠XYZ the oriented angle ∠(YX, YZ), we have $\angle AF_1B = \angle BF_1C = \angle CF_1A = 120^\circ$. Analogously, the second Fermat-Toricelli point satisfies $\angle AF_2B = \angle BF_2C = \angle CF_2A = 60^\circ$.

Clearly, the sides of the Napoleon triangles are the perpendicular bisectors of the segments joining their respective Fermat-Toricelli points with the vertices of triangle ABC (as these segments are the common chords of the circumcircles of the the equilateral triangles ABT_c , BCT_a , etc).

We prove the following interesting theorem.

Theorem *The Euler lines of the ten triangles with vertices from the set* {A, B, C, F1, F2} *are concurrent at the centroid* M *of triangle* ABC.

Proof. We divide the ten triangles in three types:

(I): Triangle ABC by itself, for which the claim is trivial.

(II): The six triangles each with two vertices from the set $\{A, B, C\}$ and the remaining vertex one of the points F_1 , F_2 .

(III) The three triangles each with vertices F_1 , F_2 , and one from $\{A, B, C\}$.

For type (II), it is enough to consider triangle ABF_1 . Let M_c be its centroid and M_C be the midpoint of the segment AB. Notice also that N_c is the circumcenter of triangle ABF_1 (see Figure 2).

Now, the points C, F_1 and T_c are collinear, and the points M, M_c and N_c divide the segments $M_C C$, $M_C F_1$ and $M_C T_c$ in the same ratio 1 : 2. Therefore, they are collinear, and the Euler line of triangle ABF contains M.

Ten concurrent Euler lines 273

For type (III), it is enough to consider triangle CF_1F_2 . Let M_c and O_c be its centroid and circumcenter. Let also M_C and M_F be the midpoints of AB and F_1F_2 . Notice that O_c is the intersection of $N_a N_b$ and $N'_a N'_b$ as perpendicular bisectors of F_1C and F_2C . Let also P be the intersection of N_bN_c and $N_c'N_a'$, and F' be the reflection of F_1 in M_C (see Figure 3).

Figure 3.

The rotation of center M and angle 120[°] maps the lines $N_a N_b$ and $N'_a N'_b$ into $N_b N_c$ and $N_c' N_a'$ respectively. Therefore, it maps O_c to P, and $\angle O_c M P = 120^\circ$. Since $\angle O_c N_a^{\prime} P = 120^{\circ}$, the four points O_c , M, N_a^{\prime} , P are concyclic. The circle containing them also contains N_b since ∠ $\angle PN_bO_c = 60^\circ$. Therefore, ∠ $O_cMN_b =$ $\angle O_cN_a^{\prime}N_b.$

The same rotation maps angle $O_c N_a' N_b$ onto angle $P N_c' N_c$, yielding $\angle O_c N_a' N_b =$ $\angle PN_c'N_c$. Since $PN_c' \perp BF_2$ and $N_cN_c' \perp BA$, $\angle PN_c'N_c = \angle F_2BA$.

Since ∠BF'A = ∠AF₁B = 120° = 180° - ∠AF₂B, the quadrilateral AF₂BF' is also cyclic and $\angle F_2BA = \angle F_2F'A$. Thus, $\angle F_2F'A = \angle O_cMN_b$.

Now, $AF' || F_1B \perp N_aN_c$ and $N_bM \perp N_aN_c$ yield $AF' || N_bM$. This, together with $\angle F_2F'A = \angle O_cMN_b$, yields $F'F_2||MO_c$.

Notice now that the points M_c and M divide the segments CM_F and CM_C in ratio 1 : 2, therefore $M_cM||M_cM_F$. The same argument, applied to the segments F_1F_2 and F_1F' with ratio 1: 1, yields $M_C M_F || F' F_2$.

In conclusion, we obtain $M_cM||F'F_2||MO_c$. The collinearity of the points M_c , M and O_c follows. 274 N. I. Beluhov

References

- [1] N. Beluhov, Sets of Euler lines, *Matematika +*, 2/2006.
- [2] I. F. Sharygin, *Geometriya. Planimetriya*, Drofa, 2001.

Nikolai Ivanov Beluhov: "Bulgarsko opalchenie" str. 5, Stara Zagora 6000, Bulgaria *E-mail address*: nbehulov@abv.bg