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INTRODUCTION 

The prolific and enigmatic mathematician John Conway, at the age of 82, tragically passed away on 11 April 
2020 due to COVID-19 complications. He worked in the theory of finite groups, knot theory, number 
theory, combinatorial game theory and coding theory. He also participated in online chatrooms about 
mathematics, and contributed to several branches of recreational mathematics, probably the most well-
known being his invention of the Game of Life.  

One of the mathematical gems discovered by Conway around 2002 is the following elementary geometry 
theorem: Given any triangle  𝐴𝐴𝐵𝐵𝐶𝐶, extend its sides at each vertex by the length of the side opposite each 
vertex as shown in Figure 1. Then  𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑃𝑃  is cyclic.  
 

 

FIGURE 1 
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SIDE DIVIDER THEOREM 

As it turns out, this result is merely a special case of a more general ‘side divider’ theorem proved in De 
Villiers (1994, 2007), which can be formulated as follows:  

Given any  ∆𝐴𝐴𝐵𝐵𝐶𝐶  with an arbitrary point  𝑃𝑃  on line  𝐴𝐴𝐵𝐵, construct 𝐵𝐵𝑃𝑃 = 𝐵𝐵𝑃𝑃, 𝐶𝐶𝑃𝑃 = 𝐶𝐶𝑃𝑃, 
𝐴𝐴𝑆𝑆 = 𝐴𝐴𝑃𝑃, 𝐵𝐵𝑇𝑇 = 𝐵𝐵𝑆𝑆, and 𝐶𝐶𝑃𝑃 = 𝐶𝐶𝑇𝑇. Then 𝐴𝐴𝑃𝑃 = 𝐴𝐴𝑃𝑃, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑃𝑃  is cyclic (see Figure 2). 

 

 

FIGURE 2 

A dynamic geometry sketch illustrating this theorem is available online at the link below, and readers are 
encouraged to engage with this interactively before reading further. 

http://dynamicmathematicslearning.com/conway-circle-as-special-side-divider-theorem.html 

The proof of the ‘side divider’ theorem is quite straight forward and should readily be accessible to high 
school learners at different levels. 

PROOF 

Label the sides 𝐴𝐴𝐵𝐵, 𝐵𝐵𝐶𝐶 and 𝐶𝐶𝐴𝐴 respectively as 𝑐𝑐, 𝑎𝑎 and 𝑏𝑏. Let 𝐴𝐴𝑃𝑃 = 𝑥𝑥, then: 

• 𝐵𝐵𝑃𝑃 = 𝐵𝐵𝑃𝑃 = 𝑐𝑐 − 𝑥𝑥 

• 𝐶𝐶𝑃𝑃 = 𝐶𝐶𝑃𝑃 = 𝑎𝑎 − (𝑐𝑐 − 𝑥𝑥) = 𝑎𝑎 − 𝑐𝑐 + 𝑥𝑥 

• 𝐴𝐴𝑆𝑆 = 𝐴𝐴𝑃𝑃 = 𝑏𝑏 − (𝑎𝑎 − 𝑐𝑐 + 𝑥𝑥) = 𝑏𝑏 − 𝑎𝑎 + 𝑐𝑐 − 𝑥𝑥 

• 𝐵𝐵𝑇𝑇 = 𝐵𝐵𝑆𝑆 = 𝑐𝑐 − (𝑏𝑏 − 𝑎𝑎 + 𝑐𝑐 − 𝑥𝑥) = 𝑎𝑎 − 𝑏𝑏 + 𝑥𝑥 

• 𝐶𝐶𝑃𝑃 = 𝐶𝐶𝑇𝑇 = 𝑎𝑎 − (𝑎𝑎 − 𝑏𝑏 + 𝑥𝑥) = 𝑏𝑏 − 𝑥𝑥 

Hence: 𝐴𝐴𝑃𝑃 = 𝑏𝑏 − (𝑏𝑏 − 𝑥𝑥) = 𝑥𝑥 = 𝐴𝐴𝑃𝑃 
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Since 𝑃𝑃𝑃𝑃𝐵𝐵 and 𝑆𝑆𝑇𝑇𝐵𝐵 are isosceles triangles sharing sides and a common vertex 𝐵𝐵, it follows that their axes 
of symmetry coincide. In other words, the perpendicular bisector of both 𝑃𝑃𝑃𝑃 and 𝑆𝑆𝑇𝑇 coincides with the 
angle bisector of 𝐵𝐵� . Similarly, the perpendicular bisectors of the other two pairs of isosceles triangles, 𝑃𝑃𝑇𝑇𝐶𝐶 
and 𝑃𝑃𝑃𝑃𝐶𝐶, and 𝑃𝑃𝑆𝑆𝐴𝐴 and 𝑃𝑃𝑃𝑃𝐴𝐴, respectively coincide with the angle bisectors of 𝐶̂𝐶 and 𝐴̂𝐴. Therefore, the 
perpendicular bisectors of all the sides of 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑃𝑃 are concurrent at the incentre of ∆𝐴𝐴𝐵𝐵𝐶𝐶, and hence the 
incentre is equidistant from the vertices of 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑃𝑃, which implies that it is cyclic, and completes the proof. 

This proof is completely general (using directed distances), and the point 𝑃𝑃 can be chosen anywhere on line 
𝐴𝐴𝐵𝐵, even outside segment 𝐴𝐴𝐵𝐵 (i.e. on either extension outside). If 𝑥𝑥 is negative, then 𝐴𝐴𝑃𝑃 lies in the opposite 
direction of the representation in Figure 2, and will lie completely outside segment 𝐴𝐴𝐵𝐵. Since the 
perpendicular bisectors of the sides remain concurrent at the incentre of ∆𝐴𝐴𝐵𝐵𝐶𝐶, all circles 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑃𝑃 remain 
concentric with the incircle of ∆𝐴𝐴𝐵𝐵𝐶𝐶.  

Note that in the special case when 𝑃𝑃 is chosen at the tangential point of the incircle of ∆𝐴𝐴𝐵𝐵𝐶𝐶, the points 𝑃𝑃 
and 𝑆𝑆 coincide, and the circle 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑃𝑃 reduces to the incircle. The hexagon 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑃𝑃 obviously has 
opposite sides parallel (𝑃𝑃𝑃𝑃 ∥ 𝑆𝑆𝑇𝑇, 𝑃𝑃𝑆𝑆 ∥ 𝑃𝑃𝑃𝑃, 𝑇𝑇𝑃𝑃 ∥ 𝑃𝑃𝑃𝑃) as a result of the three pairs of isosceles triangles, 
each pair sharing a vertex and sides. Also note that the hexagon degenerates to a (crossed) isosceles 
trapezium when 𝑃𝑃 is placed at either one of vertices 𝐴𝐴 or 𝐵𝐵. 

CONWAY’S CIRCLE THEOREM AS A SPECIAL CASE 

Conway’s Circle Theorem (as described at the beginning of the article and illustrated in Figure 1) is now 
easily obtained as a special case of the Side Divider Theorem. In Figure 2 simply choose 𝑃𝑃 (or drag it in a 
dynamic sketch) outside 𝐴𝐴𝐵𝐵, i.e. on the extension of 𝐴𝐴𝐵𝐵, so that 𝐵𝐵𝑃𝑃 = 𝑏𝑏. This choice of 𝑃𝑃 produces 
precisely Conway’s configuration as shown in Figure 1, giving us an immediate visual proof of the theorem 
since the conditions of the Side Divider Theorem are clearly met, namely 𝐵𝐵𝑃𝑃 = 𝐵𝐵𝑃𝑃, 𝐶𝐶𝑃𝑃 = 𝐶𝐶𝑃𝑃, 𝐴𝐴𝑆𝑆 = 𝐴𝐴𝑃𝑃, 
𝐵𝐵𝑇𝑇 = 𝐵𝐵𝑆𝑆 and 𝐶𝐶𝑃𝑃 = 𝐶𝐶𝑇𝑇. Note that even though the three pairs of isosceles triangles are now on opposite 
sides of the vertices of ∆𝐴𝐴𝐵𝐵𝐶𝐶, each pair still shares the same opposite angle and sides as before. Therefore, 
the perpendicular bisectors of all the sides of 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑃𝑃 remain concurrent at the incentre of ∆𝐴𝐴𝐵𝐵𝐶𝐶, and 
𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑃𝑃 remains cyclic. 

ANGLE DIVIDER THEOREM 

Although the ‘side-divider’ theorem (and its special case of Conway’s Circle Theorem) is quite remarkable 
in itself, for me personally it obtains additional beauty in having a lovely ‘side-angle’ dual as discussed in De 
Villiers (1994, 2007). This dual for any ∆𝐴𝐴𝐵𝐵𝐶𝐶 can be formulated as follows, and is illustrated in Figure 3:  
Construct any angle divider (line) 𝐴𝐴𝐴𝐴 of 𝐴̂𝐴. Rotate line 𝐴𝐴𝐵𝐵 around 𝐵𝐵 by the (directed) 𝐴𝐴𝐴̂𝐴𝐵𝐵, and label its 
intersection with 𝐴𝐴𝐴𝐴 as 𝑃𝑃. Note that this construction obviously implies that 𝐴𝐴𝐵𝐵�𝑃𝑃 = 𝑃𝑃𝐴̂𝐴𝐵𝐵. In a similar way, 
construct angle divider 𝐶𝐶𝑃𝑃 of 𝐶̂𝐶 so that 𝐵𝐵𝐶̂𝐶𝑃𝑃 = 𝑃𝑃𝐵𝐵�𝐶𝐶, angle divider 𝐴𝐴𝑃𝑃 of 𝐴̂𝐴 so that 𝐶𝐶𝐴̂𝐴𝑃𝑃 = 𝑃𝑃𝐶̂𝐶𝐴𝐴, angle 
divider 𝐵𝐵𝑆𝑆 of 𝐵𝐵�  so that 𝐴𝐴𝐵𝐵�𝑆𝑆 = 𝑆𝑆𝐴̂𝐴𝐵𝐵, and angle divider 𝐶𝐶𝑇𝑇 of 𝐶̂𝐶 so that 𝐵𝐵𝐶̂𝐶𝑇𝑇 = 𝑇𝑇𝐵𝐵�𝐶𝐶. If 𝑃𝑃 is the intersection 
of lines 𝐶𝐶𝑇𝑇 and 𝐴𝐴𝑃𝑃, then 𝑃𝑃𝐶̂𝐶𝐴𝐴 = 𝐶𝐶𝐴̂𝐴𝑃𝑃, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑃𝑃 is a tangential (circumscribed) hexagon. 
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FIGURE 3 

The proof that 𝑃𝑃𝐶̂𝐶𝐴𝐴 = 𝐶𝐶𝐴̂𝐴𝑃𝑃 is straight forward and similar to the one above, and is left to the reader to 
verify. Here the isosceles triangles 𝐴𝐴𝐵𝐵𝑃𝑃 and 𝐴𝐴𝐵𝐵𝑆𝑆 have the same axis of symmetry, namely the perpendicular 
bisector of 𝐴𝐴𝐵𝐵, which is therefore also the common angle bisector of 𝐴𝐴𝑃𝑃�𝐵𝐵 (= 𝑃𝑃𝑃𝑃�𝑃𝑃) and 𝐴𝐴𝑆̂𝑆𝐵𝐵. The same 
holds for the other two pairs of isosceles triangles on 𝐵𝐵𝐶𝐶 and 𝐶𝐶𝐴𝐴 respectively. Hence, since the perpendicular 
bisectors of ∆𝐴𝐴𝐵𝐵𝐶𝐶 are concurrent, this implies that the angle bisectors of the angles of 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑃𝑃 are also 
concurrent at the circumcentre of ∆𝐴𝐴𝐵𝐵𝐶𝐶. Therefore, the circumcentre is equidistant from all the sides of 
𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑃𝑃 (or extended sides), and it has an incircle concentric with the circumcircle of ∆𝐴𝐴𝐵𝐵𝐶𝐶. 

Again the result and proof is perfectly general (using directed angles), and the angle divider 𝐴𝐴𝐴𝐴 may also fall 
outside 𝐴̂𝐴. The reader may also wish to explore the dynamic construction illustrating this theorem, which is 
available at the same URL provided earlier. The reader is also encouraged to use it to consider special cases. 

CONCLUDING COMMENTS 

It is not known to me whether Conway was aware of the more general ‘side-divider’ theorem presented 
above when he posed his problem in 2002. However, it is likely that he knew of it and precisely posed the 
curious, special case in the hope that in proving it, others might discover its further generalization. 

Both the ‘side-divider’ theorem, and its dual, the ‘angle-divider’ theorem, respectively generalize to tangential 
(circumscribed) and cyclic polygons, and are discussed further in my book (De Villiers, 1994, 2007). At the 
1996 AMESA Congress, in a paper about the ‘side-angle’ duality in geometry, I mentioned among others, 
the quadrilateral cases for both results (De Villiers, 1996). In NCTM Conferences in 1999 and 2000, 
respectively in San Francisco and Chicago, I may also have mentioned these theorems in my presented 
papers. In April 2001, my paper at the Annual Meeting of the Mathematical Association at St. Martin’s 
College specifically dealt in some detail with both theorems and their generalizations, using the concept of 
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directed distances and angles. Personally I first became aware of the ‘side-divider’ theorem in a short paper 
by Van Duyn (1987) who discussed the case for a tangential (circumscribed) quadrilateral. This latter paper 
inspired me to investigate & generalize it further to the general ‘side-divider’ theorem for tangential polygons. 

Conway’s Circle Theorem has apparently appeared on Math Camp T-shirts for high school students in the 
USA, and got some more attention shortly after his death in April 2020 where it was mentioned in blogs by 
Matt Baker (2020), Colin Beveridge (2020) and Colm Mulcahy (2020), where some other elementary proofs 
are also given. So far the only paper that I’ve been able to find that not only generalizes Conway’s Circle 
Theorem to the ‘side-divider’ theorem for a triangle, but also generalizes it to tangential polygons, is that of 
Braude (2021). However, Braude’s generalizations are unfortunately restricted to only the extensions of the 
sides outside the polygons (apparently not considering/mentioning, with reference to Figures 1 and 2, that 
𝑃𝑃 could fall on (inside) side 𝐴𝐴𝐵𝐵).  

While the ‘angle-divider’ theorem and its generalization to cyclic polygons seems less known, the ‘side-
divider’ theorem (at least for a triangle) has been around for some time, and might have been well known 
much longer in problem solving circles in other parts of the world, e.g. Eastern Europe and Asia. It has 
often been used in Olympiad training of talented students locally in South Africa as well as appearing from 
time to time in student journals. In fact, the first part of the ‘side-divider’ theorem featured as a question in 
the March 1999 Sharp Calculator Competition of the Mathematical Digest, published by the University of Cape 
Town. This question was presumably inspired by David Gale (1998) from the University of California, 
Berkeley, who wrote the following little amusing limerick about the first part of the theorem: 

Euclid’s Last (or Lost) Theorem 

In a triangle called ABC  

Pick a point on AB, call it P. Pick a Q on BC, 

Where BQ is BP. 

Ah the joys of pure geo-me-tree!  

On CA pick an R, oh please do, Where CR is exactly CQ, And now pick an S 

On AB, more or less, 

So that “AS is AR” is true.  

On BC the next letter is T, 

Where BT is BS, don’t you see. 

On CA pick a U, 

And you’ll know what to do, 

Next what’s this? We’ve arrived back at P!  

Now some proofs were soon found close at hand,  

But it didn’t turn out quite as planned, 

For though not very large 

(They would fit in the margin) regrettably, none of them scanned.  
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Not able to resist the temptation, I’d like to suggest adding the following two lines to Gale’s limerick to 
cover the second part of the ‘side-divider’ theorem for a triangle: 

Lastly, tighten your girdle,  

because PQRSTU lies on a circle. 
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