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Recycling Cyclic Polygons Dynamically
Michael de Villiers

Introduction

In the November 2005 issue, Chris Pritchard (2005) presented an interesting property

of (convex) cyclic 2n-gons, namely, that the two sums of alternate angles are equal to

(n -1)180˚. A natural mathematical question to ask is whether the converse is also

true? (Compare De Villiers, 1996, pp. 65, 167 or De Villiers, 2003, pp.82-84, 181).

For example, given any (convex) 2n-gon with the two sums of alternate angles equal

to (n -1)180˚, is it necessarily cyclic?

Educationally, it is always a good idea to challenge one's students to first

explore conjectures experimentally by means of dynamic geometry. For example, ask

them to construct a 2n-gon that meets the premise (i.e. the sum of alternate angles

equal to (n -1)180˚), and then to check by dragging whether the conclusion (i.e. that it

is cyclic) is always true. In the event that the conjecture is true, the value of such

experimentation lies in providing the confidence to look for a proof, and might also

sometimes suggest a way of proving it. Of course, if the conjecture is false, a counter-

example will hopefully be produced.

Experimental Exploration
Let's first consider a quadrilateral where the sum of one pair of opposite angles is

supplementary (i.e. 180˚). How do we construct a dynamic quadrilateral with opposite

(or alternate) angles always supplementary?

To achieve this, firstly construct a straight line as shown in Figure 1, dividing

it into two supplementary angles DCA and DCB as shown. Then irrespectively of how

D is dragged, these two angles will obviously remain supplementary.

Figure 1

m∠DCA = 112.3° m∠DCB = 67.7°
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The next step is to construct two opposite angles HEF and HGF correspondingly

equal to DCA and DCB. For example, as shown in Figure 2 using Sketchpad,

construct a ray from E, then select angle DCA and choose Mark Angle from the

Transform menu. Select E and choose Mark Center from the Transform menu. Then

by selecting the ray from E, and choosing Rotate from the Transform menu, the ray

will be rotated exactly by the marked angle DCA.

Figure 2

  Figure 3

m∠HEF = 112.3°

m∠HGF = 67.7°

m∠DCA = 112.3 ° m∠DCB = 67.7°
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By repeating the same procedure, an angle HGF exactly equal to angle DCB can be

constructed as shown in Figure 3, and the intersection of the rays from E and G

therefore gives us the required dynamic quadrilateral EFGH with opposite angles

supplementary. The size of the supplementary angles HEF and HGF can now easily

be controlled by dragging point D. But how can we now check whether this

quadrilateral EFGH is always cyclic irrespective of how these angles are changed?

Recall that in order for a circle to be drawn through any number of points,

there has to be a central point, which is equidistant from all these points (i.e. the radii

from this centre to all the points need to be constant). Since a perpendicular bisector is

the locus of all points equidistant from two points, this obviously implies that for any

polygon to be cyclic, the perpendicular bisectors of all its sides have to be concurrent

in a single point for that point to be equidistant from all the vertices. Therefore to

check whether EFGH is always cyclic is equivalent to checking whether the

perpendicular bisectors of its sides are always concurrent as shown in Figure 4.

Figure 4

By dragging D, the size of the opposite supplementary angles can now be varied

arbitrarily, and can it easily be checked experimentally that the perpendicular

bisectors are always concurrent no matter how D is dragged. Since this point of

m∠HEF = 121.4°

m∠HGF = 58.6°

m∠DCA  = 121.4° m∠DCB  = 58.6°

F

H

A B

D

E

G

C



Published in Mathematics in School, May 2006, Vol. 35, no. 3, pp. 2-4, copyright the Mathematical
Association,     http://www.m-a.org.uk    

concurrency is equidistant from all four vertices, the unique circle passing through all

four vertices can also easily be drawn by centring it at this point of concurrency.

Mathematical Proof

So clearly the converse is true for a (convex) quadrilateral and the conjecture now

achieves the status of a theorem. Of course, no amount of empirical evidence, no

matter how convincing it may be, constitutes a mathematical proof of a theorem,

which requires that it be demonstrated by logic alone. So how do we prove it

mathematically?

Theorem

A quadrilateral ABCD is cyclic if it has a pair of opposite (or alternate) angles

supplementary.

Figure 5
Proof

This sort of result is ideally suited for introducing students to a very useful form of

proof called “Proof by Contradiction”. In this kind of proof, we start by assuming our

conclusion is false. Then we show this leads to a contradiction, indicating that our

conclusion must have been true. So we start by assuming the opposite angles of

convex quadrilateral ABCD are supplementary, but quadrilateral ABCD is not cyclic.

Since any circle can be drawn through three non-collinear points, we start by
drawing the circumcircle of ABC, assuming the circle does not pass through D, but
through D' on ray AD. Since ABCD' is cyclic, ∠ABC +∠A ʹ D C =180° . But
∠ABC +∠ADC = 180°  is given. Therefore, ∠A ʹ D C = ∠ADC . From the exterior
angle of a triangle theorem, we have ∠A ʹ D C = ∠ ʹ D CD +∠ADC . But since
∠A ʹ D C = ∠ADC , it implies that ∠ ʹ D CD  must be equal to zero. Therefore D and D'
coincide, and this contradicts our initial assumption. Thus ABCD must be cyclic.
(Note: If it is assumed that D' falls on AD extended, the argument is similar to the
preceding, except that now ∠ADC =∠DC ʹ D + ∠A ʹ D C ).

A

B
C

D

O

D'



Published in Mathematics in School, May 2006, Vol. 35, no. 3, pp. 2-4, copyright the Mathematical
Association,     http://www.m-a.org.uk    

Problems with Contradiction
Since many students at school and even at university have difficulty with proof by
contradiction, it is usually helpful to point out to them that most mathematicians only
use the method of "Proof by Contradiction" as a last resort. Generally, a direct proof
is preferred (which shows that something follows directly, through the application of
logical rules, from one's assumptions). One of the problems with proofs by
contradiction is that they tend not to explain why something is true; only that it is true
(because its contradiction is false). In fact, there is a small group of mathematicians
called the "intuitionists" who reject all proofs of this kind. Their attempts, however, to
rewrite mathematics without using this technique have unfortunately been largely
unsuccessful. It seems therefore that there are many important results in mathematics,
which unfortunately can only be proved by means of proof by contradiction.

Further Exploration
Now what about cyclic hexagons, cyclic octagons, and cyclic 2n-gons in general? Is it
generally true that if a sum of alternate angles of a 2n-gon is equal to (n -1)180˚, then
it is cyclic?

During my teaching experience with mostly prospective or in-service high
school teachers, it is seldom that any doubts are exhibited about it being generally
true. Typical comments are something like: "If it is true for quadrilaterals, which we
have just shown, then it has to be true for all 2n-gons!"

Figure 6

Indeed there is often a tangible sense of annoyance, exasperation or boredom in the
class when asked to check whether it is indeed true for, say, a hexagon. Nevertheless,
encouraging them to check eventually leads to some of them making the startling

m∠ABC+m∠CDE+m∠EFA = 360.00°
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discovery that it is not necessarily true for a hexagon. Starting with three angles
adding up to 360˚, it is not difficult to construct a dynamic hexagon with three
alternate angles correspondingly equal to these angles. For example, consider the
hexagon ABCDEF shown in Figure 6 where ∠B +∠D +∠F = 360° , but the hexagon
is not cyclic since the perpendicular bisectors of its sides are not concurrent! So there
is no equidistant point in relation to all six vertices, and therefore no circle can be
drawn through all six vertices!

Figure 7

Of interest here is also an argument given by Werner Olivier, the top student in my

2005 geometry class for prospective high school teachers. Instead of a dynamic

hexagon as described above, consider any cyclic hexagon as shown in Figure 7.

Respectively extend AF and CD to F' and D', and then draw lines through these points

respectively parallel to FE and DE to intersect in E'. Clearly, all the angles of

ABCD'E'F' are the same as that of ABCDE, but it is obviously not cyclic, and

therefore a counter-example. Now that's the sign of mature mathematical reasoning!

No wonder this student got 97% in the final examination!

One of the problems with the traditional Euclidean approach to geometry is

that there are very few cases where the converses of theorems are false, and students

inevitably assume that they are also always true. It is therefore a valuable strategy to

go beyond dealing only with the special cases of triangles and quadrilaterals as in

Euclid, but to regularly examine analogous cases for polygons where appropriate.

This often provides ample opportunities for showing the difference between a
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statement and its converse, and often highlights the "specialness" of triangles and

quadrilaterals. Moreover, genuine mathematical research involves both proving and

disproving, and both these need to be reflected in our teaching. It is simply not

sufficient to just focus on developing students' skills in proving true statements, but

not provide instructive opportunities for also developing their ability to find counter-

examples.

Crossed Cyclic Polygons
In mathematics, solutions to problems and answers to questions almost always lead to

new problems and questions. The following questions could be used to challenge

more able high school or undergraduate students. What happens if we have a crossed

cyclic quadrilateral as shown in the first figure in Figure 8? Here the two sums of

alternate (opposite) angles are clearly no longer equal, nor are they necessarily

constant and can change as some of the vertices are dragged. However, if we use

(directed) arc angles as shown in the second figure in Figure 8, then the two sums of

alternate angles are not only equal, but remain constant no matter which vertices are

dragged! (Note that this requires devising a more precise definition of what is meant

exactly by the internal angles of a crossed polygon).

Figure 8

Are the two sums of alternate angles of any crossed cyclic polygon always equal (and

constant)? The answer is "no", as shown by the crossed hexagon in the first figure in

Figure 9 (even if directed arc angles are used). However, it is true for certain classes

of crossed cyclic polygons such as the one shown in the second figure in Figure 9.

m arc CBA( )+ m arc ADC( ) = 360.0°
m arc BAD( )+ m arc BCD( ) = 360.0°
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Figure 9

A more complete discussion with proofs and more generalisations of the examples in

Figures 8 and 9 are given in De Villiers (1996, 2003). Of interest too may be the

discussion in these two books of a dual to the cyclic polygon results referred to here,

which involve the sums of alternate sides of circum polygons (polygons

circumscribed around a circle).

Note

Sketchpad sketches for exploring and demonstrating the results explored here can be

downloaded in zipped format from:

http://mysite.mweb.co.za/residents/profmd/cyclicpoly.zip

These dynamic geometry figures can also be viewed and manipulated with the Free

Demo of Sketchpad which can be downloaded from:

http://www.keypress.com/sketchpad/sketchdemo.html
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Download Sketchpad 5 for for free from: http://dynamicmathematicslearning.com/free-download-sketchpad.html 
(Sketchpad 5 will opnen the Sketchpad 4 sketches above)
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