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which is only a different manner of writing (1), we obtain 

or 

1 2 1 2 --+--<-+-a.+ l b.+ l a. b. 

3a.+ 1b.+ 1 3a.b. > 
2a.+l + b.+ l 2a. + b. 

or, in abbreviated form, if we set 

then 

(4) 

3a.b. = B., 
2a. + b. 

The inequalities (3) and (4) imply that as v increases, A. grows 
continuously smaller, B. continuously larger. 

Since for infinitely great v, both A. and B. become the circum-
ference u of the circle, for every finite v it must be true that 

B. < u < A •. 

The limits A. and B. of this inequality are much narrower than the 
Archimedes limits a. and b.. Ifwe take the hexagon, for example, as 
our initial polygon and d = 1, then ao = 2VS, bo = 3, u = 7T, and 
we obtain Al = 3.1423 and Bo = 3.1402; thus we are able to obtain 
the correct value of 7T to two accurate decimal places by using only 
the inscribed hexagon and the circumscribed dodecagon, whereas the 
same precision is achieved by the Archimedes method only with the 
use of the polygon of 96 sides. 

• Fuss' Problem of the Chord-Tangent Quadrilateral 
To find the relation between the radii and the line joining the centers of the 

circles of circumscription and inscription of a bicentric quadrilateral. 

A bicentric or chord-tangent quadrilateral is defined as a quadrilateral 
that is simultaneously inscribed in one circle and circumscribed 
about another. Let PQRS be such a quadrilateral, ([ the circum-
scribed circle, r the inscribed circle. Let the points of tangency of the 
opposite sides PQ and RS with circle r be X and X', let the points of 
tangency of the opposite sides QR and SP be Yand Y', and let the 
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point of intersection of the tangency chords XX' and YY' be O. If 
we then apply the theorem of the sum of the angles of a quadrilateral 

p 

s 

FIG. 31. 

to the two quadrilaterals OXPY and OX'RY', designating the 
quadrilateral angles by means of a line over the letter representing 
the comer, we obtain the two equations 

o + X, + R + Y' = 360°. 

Since the angles X and X, (Yand Y') situated at opposite sides of the 
chord XX' (YY') add up to 180°, addition of the two equations gives 
the following relation 

(I) 

Now the sum of the two opposite angles P and R of the chord 
quadrilateral PQRS is 180°; consequently, 0 = 90°. 

The tangency chords of the two pairs of opposite sides of a bicentric 
quadrilateral are therefore perpendicular to each other. 

This condition is also sufficient: A bicentric quadrilateral PQRS is 
obtained if the tangents PQ, RS, SP, QR are drawn through the end points 
X, X', Y, Y' of two perpendicular chords XX' and YY' of an arbitrary 
circle r. In fact, it now follows from (I), since () = 90°, that the sum 
of the opposite angles P and R is 180°, i.e., that PQRS is also a chord 
quadrilateral. 

The simplest way of obtaining the desired relation between the 
radii and the axis of the centers of the circumscribed and inscribed 
circles is by means of the following locus problem. A right angle is 
rotated about its fixed vertex, which is located inside a circle,. find the locus of 
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the point of intersection of the two circle tangents that pass through the point of 
intersection of the legs of the angle with the circle. 

SOLUTION OF THE LOCUS PROBLEM. Let the given circle be known as 
r, its midpoint as M, its radius as p, the fixed vertex of the right angle 
as 0, the distance of the vertex from Mas e. Let the legs of the right 
angle intersect the circle at the (moving) points X and Y; and let the 
point of intersection of the two circle tangents passing through X and 
Y be known as P and its distance from the center of the circle as p. 

p 

FIG. 32. 

We will first determine the relation between p and its angle rp 
(= OMP) with the fixed line MO. 

Since OXY is a right triangle, 

0F2 = FX·FY, 
where F represents the base point of the altitude to the hypotenuse. 
If we introduce the projections p' = MN and e' = e cos rp and 
p" = NX and e" = e sin rp (= NF) on the lines MP and XY, respec-
tively, the equation can be written 

(p' - e')2 = (p" - e")(p" + e") 
or 

2p'2 _ 2p'e' + e'2 + e"2 = p'2 + p"2 
or 

(2) 2p'2 - 2p'e cos rp + e2 = p2. 

Since MXP is a right triangle, 

MX2 = MP.MN 
or 

(3) 
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If we introduce the value of p' from (3) into (2), we obtain the 
relation we are looking for: 

2e 2p4 
(4) p2 + 2 -P_p cos rp = --. p2 _ e2 p2 - e2 

The distance r = ZP of a point Z from P on the extension of OM 
at a distance of MZ = z from M is obtained by the cosine theorem 
(5) r2 = Z2 + p2 + 2zp cos rp. 

Iffor z, which up to this point has been arbitrary, we now choose the 
value 

p2 
(I) MZ= z = p - r:-
we obtain, in accordance with (4), 

2p4 
(II) r2 = Z2 + ---, p2 _ e2 

and consequently r has a constant value! 
The desired locus of the point of intersection P is thus a circle Q: whose 

center Z, which is situated on the extension of OM, is determined by 
(I) and whose radius r is determined by (II). 

Naturally, also belonging to this locus are the points of intersection 
Q, R, S of the tangents, which are obtained when we draw the" 
tangents through the points of intersection of the circle r with the 
extensions of XO and YO. 

The quadrilateral PQRS is simultaneously a tangent and chord 
quadrilateral, in that it circumscribes circle r and is inscribed in 
circle Q:. If the right angle XO Y is rotated about 0 so that the points 
X, Y describe the circle r, the quadrilateral PQRS continuously 
assumes different positions but always circumscribes circle r and is 
always inscribed in circle Q:. Similarly, we see that in this way all 
the bicentric quadrilaterals belonging to the two circles rand Q: are 
obtained. The obtained formulas (I) and (II) contain the solution 
to the problem posed. 

We substitute the value obtained from (II) for p2 - e2 in (I) and 
obtain e = 2zp2/(r2 - Z2). From this there follows p2 - e2 = 
p2[(r2 _ Z2)2 _ 4p2Z2] /(r2 - Z2)2. When this value is introduced 
into (II) we finally obtain the sought-for relation between the radii r and 
p and the axis z connecting the centers of the circumscribed and inscribed circles 
of the bicentric quadrilateral : 

2p2(r2 + Z2) = (r2 _ Z2)2. 
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The developed formula comes from Nicolaus Fuss (1755-1826), a 
student and friend of Leonhard Euler. Fuss also found the corre-
sponding formulas for the bicentric pentagon, hexagon, heptagon, and 
octagon (Nova Acta Petropol., XIII, 1798). 

The corresponding formula for the triangle had already been given 
by Euler. It is 

r2 - Z2 = 2rp 

and is easily obtained in the following manner. Let ABC be any 
triangle, let Z and M be the respective centers, r and p the radii of 
the circles of circumscription and inscription, respectively; thus, 
ZM = z is the axis connecting the centers; further, let D be the point 
at which the extension of CM meets the circumscribed circle, so that 
DM = DA = DB. The power of the circumscribed circle at Mis 

MC.MD = r2 - Z2. 

However, since we can replace sin (y/2) by the ratio p/MC as well as 
by AD/2r or MD/2r, p/MC = MD/2r, i.e., 

MC·MD = 2rp. 

When the two values found for the product MC· MD are set equal to 
each other we obtain Euler's formula. 

NOTE. Much more remarkable than the Fuss formula is a theorem 
concerning bicentric quadrilaterals that follows directly from the 
preceding locus consideration. For convenience in expression we will 
make a prefatory observation. 

Let a circle r lie completely inside another circle (t. If from any 
point on (t we draw a tangent to r, extend the tangent line so that it 
intersects (t, and draw from the point of intersection a new tangent 
to r, extend this tangent similarly to intersect (t, and continue in this 
manner, we obtain a so-called Poncelet traverse which, when it consists 
of n chords of the larger circle, is called n-sided. 

The theorem concerning bicentric quadrilaterals now reads: 
If on the circle of circumscription there is one point of origin for which a 

four-sided Poncelet traverse is closed, then the four-sided traverse will also close 
for any other point of origin on the circle. 

The French mathematician Poncelet (1788-1867) demonstrated 
that this theorem is not limited to four-sided traverses only, but is 
generally true for n-sided traverses, and not only for circles, but for 
any type of conic section. The general theorem reads: 


