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which is only a different manner of writing (1), we obtain
1
L 2Ll 2

ay+1 by 41 a, b,

or
3av + lbv +1 > 3avbv
2a,,1 + byy1 ” 22, + b,

or, in abbreviated form, if we set

3a,b,
2a, + b, By,
then
4) B,,, > B,.

The inequalities (3) and (4) imply that as v increases, 4, grows
continuously smaller, B, continuously larger.

Since for infinitely great v, both 4, and B, become the circum-
ference u of the circle, for every finite v it must be true that

B, <u< A,

The limits 4, and B, of this inequality are much narrower than the
Archimedes limits ¢, and b,. If we take the hexagon, for example, as
our initial polygon and d = 1, then a, = 2V/3, b, = 3, 4 = =, and
we obtain 4; = 3.1423 and B, = 3.1402; thus we are able to obtain
the correct value of » to two accurate decimal places by using only
the inscribed hexagon and the circumscribed dodecagon, whereas the
same precision is achieved by the Archimedes method only with the
use of the polygon of 96 sides.

Fuss’ Problem of the Chord-Tangent Quadrilateral

To find the relation between the radii and the line joining the centers of the
circles of circumscription and inscription of a bicentric quadrilateral.

A bicentric or chord-tangent quadrilateral is defined as a quadrilateral
that is simultaneously inscribed in one circle and circumscribed
about another. Let PQRS be such a quadrilateral, € the circum-
scribed circle, I the inscribed circle. Let the points of tangency of the
opposite sides PQ and RS with circle I' be X and X', let the points of
tangency of the opposite sides QR and SP be Y and Y’, and let the
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point of intersection of the tangency chords XX’ and YY' be 0. If
we then apply the theorem of the sum of the angles of a quadrilateral

Fic. 31.

to the two quadrilaterals OXPY and OX'RY’, designating the
quadrilateral angles by means of a line over the letter representing
the corner, we obtain the two equations

O+X+P+7=360, O+ X +R+ ¥ =360
Since the angles X and X’ (¥ and Y") situated at opposite sides of the

chord XX’ (YY’) add up to 180°, addition of the two equations gives
the following relation

(1) 20 + P + R = 360°.

Now the sum of the two opposite angles P and R of the chord
quadrilateral PQRS is 180°; consequently, O = 90°.

The tangency chords of the two pairs of opposite sides of a bicentric
quadrilateral are therefore perpendicular to each other.

This condition is also sufficient: A bicentric quadrilateral PQRS is
obtained if the tangents PQ , RS, SP, QR are drawn through the end points
X, X', Y, Y’ of two perpendicular chords XX' and YY' of an arbitrary
circle . In fact, it now follows from (1), since O = 90°, that the sum
of the opposite angles P and R is 180°, i.e., that PQRS is also a chord
quadrilateral.

The simplest way of obtaining the desired relation between the
radii and the axis of the centers of the circumscribed and inscribed
circles is by means of the following locus problem. A right angle is
rotated about its fixed vertex, which is located inside a circle; find the locus of
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the point of intersection of the two circle tangents that pass through the point of
intersection of the legs of the angle with the circle.

SOLUTION OF THE LOCUs PROBLEM. Let the given circle be known as
T, its midpoint as M, its radius as p, the fixed vertex of the right angle
as O, the distance of the vertex from M ase. Let the legs of the right
angle intersect the circle at the (moving) points X and Y; and let the
point of intersection of the two circle tangents passing through X and
Y be known as P and its distance from the center of the circle as p.

Fi1c. 32.

We will first determine the relation between p and its angle ¢
(= A OMP) with the fixed line MO.
Since OXY is a right triangle,
OF? = FX.FY,

where F represents the base point of the altitude to the hypotenuse.
If we introduce the projections p’ = MN and ¢ = ¢cosp and
p” = NX and ¢” = esin ¢ (= NF) on the lines MP and XY, respec-

tively, the equation can be written

(" =€) = (p" — &) (p" + ¢)

or

202 — 2p'¢’ + €2 + €"2 = p'% 4 p"2
or
(2) 2p'% — 2p'ecos ¢ + €2 = p?

Since MXP is a right triangle,
MX?% = MP-MN
or

(3) p* = pp'.
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If we introduce the value of p’ from (3) into (2), we obtain the
relation we are looking for:

2 pe _ 2
(4) b4 +2p2_ezz°c°59’—p2_ez

The distance r = ZP of a point Z from P on the extension of OM
at a distance of MZ = z from M is obtained by the cosine theorem
(5) r2 = 7% + p% + 2zp cos ¢.

If for z, which up to this point has been arbitrary, we now choose the

value
2

(I) MZ=z= pz”_ez.e,
we obtain, in accordance with (4),

9,4
(11) ri=2" ¢ o i oy

and consequently r has a constant value!

The desired locus of the point of intersection P is thus a circle € whose
center Z, which is situated on the extension of OM, is determined by
(I) and whose radius r is determined by (II).

Naturally, also belonging to this locus are the points of intersection
@, R, S of the tangents, which are obtained when we draw the
tangents through the points of intersection of the circle I' with the
extensions of XO and YO.

The quadrilateral PQRS is simultaneously a tangent and chord
quadrilateral, in that it circumscribes circle I' and is inscribed in
circle €. If the right angle XOY is rotated about O so that the points
X, Y describe the circle I', the quadrilateral PQRS continuously
assumes different positions but always circumscribes circle I' and is
always inscribed in circle €. Similarly, we see that in this way all
the bicentric quadrilaterals belonging to the two circles I' and € are
obtained. The obtained formulas (I) and (II) contain the solution
to the problem posed.

We substitute the value obtained from (II) for p2 — €2 in (I) and
obtain e = 2zp%/(r? — z%). From this there follows p? — &2 =
PA[(r? — 22)2 — 4p%2%]/(r? — 22)2. When this value is introduced
into (II) we finally obtain the sought-for relation between the radii r and
p and the axis z connecting the centers of the circumscribed and inscribed circles
of the bicentric quadrilateral :

2p3(r% + 2%) = (r2 — z2)2
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The developed formula comes from Nicolaus Fuss (1755-1826), a
student and friend of Leonhard Euler. Fuss also found the corre-
sponding formulas for the bicentric pentagon, hexagon, heptagon, and
octagon (Nova Acta Petropol., X111, 1798).

The corresponding formula for the triangle had already been given
by Euler. Itis

12— 22 =2rp

and is easily obtained in the following manner. Let ABC be any
triangle, let Z and M be the respective centers, r and p the radii of
the circles of circumscription and inscription, respectively; thus,
ZM = zis the axis connecting the centers; further, let D be the point
at which the extension of CM meets the circumscribed circle, so that
DM = DA = DB. The power of the circumscribed circle at M is

MC-MD = r2 — 22,

However, since we can replace sin (y/2) by the ratio p/MC as well as
by AD[2r or MD|2r, p/MC = MD|2r, i.e.,

MC-MD = 2rp.

When the two values found for the product MC-MD are set equal to
each other we obtain Euler’s formula.

NoTe. Much more remarkable than the Fuss formula is a theorem
concerning bicentric quadrilaterals that follows directly from the
preceding locus consideration. For convenience in expression we will
make a prefatory observation.

Let a circle I' lie completely inside another circle €. If from any
point on € we draw a tangent to I', extend the tangent line so that it
intersects €, and draw from the point of intersection a new tangent
to I, extend this tangent similarly to intersect €, and continue in this
manner, we obtain a so-called Poncelet traverse which, when it consists
of n chords of the larger circle, is called r-sided.

The theorem concerning bicentric quadrilaterals now reads:

If on the circle of circumscription there is one point of origin for which a
Jfour-sided Poncelet traverse s closed, then the four-sided traverse will also close
Jor any other point of origin on the circle.

The French mathematician Poncelet (1788-1867) demonstrated
that this theorem is not limited to four-sided traverses only, but is
generally true for n-sided traverses, and not only for circles, but for

any type of conic section. The general theorem reads:



