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INTRODUCTION

The purpose of this paper is to investigate what the role of experimentation is in

mathematics, reflecting on some historical examples and some from my own

mathematical experience. With experimentation is meant here all non-deductive

methods including intuitive, inductive or analogical reasoning. In other words, it is

specifically employed when:

(i) mathematical conjectures and/or statements are numerically or visually

evaluated, by means of special cases, accurate geometric construction and

measurement, etc.

(ii) conjectures, generalisations or conclusions are made on the basis of intuition,

analogy or experience obtained through any of the preceding experimental

methods, etc.

The most important functions of experimentation (in no specific order of importance)

can be distinguished as follows, though these are quite often closely linked, as will be

illustrated in the following discussion and examples:

* conjecturing (looking for an inductive pattern, generalisation, etc.)

* verification (obtaining certainty about the truth or validity of a statement or

conjecture)

* global refutation (disproving a false statement by generating a counter-

example)

* heuristic refutation (reformulating, refining or polishing a true statement by

means of local counter-examples)

* understanding (the meaning of a proposition, concept or definition or assisting

with the discovery of a proof).

CONJECTURING

The history of mathematics is literally replete with hundreds of examples where

conjectures were made merely on the basis of intuition, numerical investigation

and/or construction and measurement. A good example is the famous Prime Number
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theorem which was first formulated in about 1792 by Gauss. Using numerical

evidence obtained from counting prime numbers and using logarithms, Gauss

discovered that the number of prime numbers smaller or equal to a number n, is

always approximately
n

logn
, and the approximation improved as n increased. While

several mathematicians already actively used the conjecture at the beginning of the

nineteenth century to explore different properties of prime numbers, a partial proof of

it was only given in 1850 by Chebychev. Although the conjecture was generally

accepted as proved from 1859 onwards when Riemann published a more complete

proof, there were still some gaps in his proof that were only filled in later,

independently of each other, by Hadamard and De La Vallee' Poussin in 1896.

This example also shows that mathematicians may sometimes, even in the

absence of rigorous proofs, accept certain inductively confirmed conjectures as

"theorems", especially if they are in an important field of research.

Polya (1954:3) similarly strongly emphasises the importance of

experimentation in the discovery or invention of new mathematics, and quotes one of

the most productive mathematicians of all time, namely, Leonhard Euler, in this

regard as follows:

"As we must refer the numbers to the pure intellect alone, we can hardly

understand how observations and quasi-experiments can be of use in

investigating the nature of numbers. Yet in fact ... the properties of the

numbers known today have been mostly discovered by observation, and

discovered long before their truth has been verified by rigid

demonstrations."

From my own (though relatively mundane) mathematical experience, I can also give

several different examples where my own initial conjectures flowed almost entirely

from prior experimental experience. For example, a couple of years ago I made the

following two dual conjectures (see De Villiers, 1991), while investigating the

symmetry of several different graphs and their associated derivatives using graphing

software:

(1) A differentiable function in the plane is reflective symmetric around a vertical

axis y = a if and only if its derivative is point symmetric around the point (a;

0);
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(2)  A differentiable function in the plane is point symmetric around a point (a; b)

if and only if its derivative is reflective symmetric around the axis y = a.

The arrival of the modern computer, as an extremely powerful tool for experimental

exploration, has in the past few decades also revolutionised mathematical research in

several areas, resulting in many new and exciting results.

One of the main advantages of computer exploration of topics is that it

provides powerful visual images and intuitions that can contribute to a person's

growing mathematical understanding of that particular research area. Furthermore, the

computer provides a unique opportunity for the researcher to formulate a great

number of conjectures and to immediately test them by only varying a few parameters

of a particular situation.

Even traditional Euclidean geometry is experiencing an exciting revival, in no

small part due to the recent development of dynamic geometry software such as

Cabri, Sketchpad and Cinderella. In fact, Philip Davies (1995) predicts as a

consequence a particularly rosy future for resurgence in triangle geometry research.

Recently Adrian Oldknow (1995) for example used Sketchpad to discover the hitherto

unknown result that the Soddy center, incenter and Gergonne point of a triangle are

collinear (amongst other interesting related results). Similarly, I recently

experimentally discovered a generalisation of Neuberg's theorem (De Villiers, 2002),

and rediscovered a beautiful generalisation of the nine-point circle of a triangle to a

nine-point ellipse (conic), as well as an associated generalisation of the Euler line.

Much is often made of the crucial role of "intuition" in mathematical

discovery and invention. Perhaps most significantly from an educational point of view

is that most authors strongly emphasise that intuition is dependent on "experience"

rather than just an innate, natural ability. In other words, it mostly develops from the

regular handling, exploration and manipulation of mathematical objects. Such

experience obviously does not only refer to formal logical manipulation, but also to

the experimental exploration of objects.

VERIFICATION/CONVICTION

Contrary to the traditional belief amongst many mathematics teachers that only proof

provides certainty for the mathematician, mathematicians are often convinced of the

truth of their results (usually on the basis of experimental evidence), long before they



have proofs. Indeed, as argued in De Villiers (1990), conviction is often a prerequisite

for looking for a proof. If one were uncertain about a result one would rather look for

a counter-example, not a proof. However, one needs to be reasonably convinced about

the truth of a result before sitting down and possibly spending a considerable amount

of time generating a proof.

In real mathematical research, personal conviction usually depends on a

combination of experimentation and the existence of a logical (but not necessarily

entirely rigorous) proof. In fact, a very high level of conviction may sometimes be

reached even in the absence of a proof. For instance, Davis & Hersh (1983) present

extremely convincing "heuristic evidence" in support of the still unproved Riemann

Hypothesis in terms of numerical evidence and a statistical model developed by Good

& Churchhouse in 1968, and conclude that this evidence is "so strong that it carries

conviction even without rigorous proof."

That this kind of experimental conviction often precedes and motivates a proof

is borne out in the history of mathematics, i.e. by the frequent heuristic precedence of

results over arguments, of theorems over proofs. For example, Gauss is reputed to

have complained: "I have had my results for a long time, but I do not yet know how I

am to (deductively) arrive at them". Bernhard Riemann also exclaimed in some

frustration: "If only I had the theorems! Then I should find the proofs easily enough.".

Furthermore, experimental evidence not only frequently plays a role in the

initial formulation of a conjecture, but quite often also in continuing efforts to prove a

particular result. Let us consider a very simple example. Since an isosceles trapezoid

has (at least) one opposite pair of parallel sides, as well as equal diagonals, it seems

reasonable to conjecture that these might be sufficient conditions for defining an

isosceles trapezoid. However, suppose one does not fairly quickly come up with a

proof (and the reader is invited to try and prove this before reading further), one

would naturally start wondering whether it is indeed true. Perhaps the conjecture is

false and one is trying to prove something that is not true!

Figure 1
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However, by accurately (or even roughly) drawing a line segment AD and a line

parallel to it, and then equal diagonals AC and DB, as shown in Figure 1 to test it, one

can intuitively see, even without measurement, that opposite sides ABn = DCn,

irrespective of how or where the diagonals ACn = DBn are drawn. Even better, one

could do the construction in a dynamic geometry environment to gain an even higher

level of confidence. Now armed with the knowledge that a counter-example cannot be

constructed and that it is definitely true, one can now with renewed confidence

resume looking for a proof.

GLOBAL REFUTATION

In everyday life people often use a kind of fuzzy logic, i.e. believing certain things to

be true if it is true most of the time, simply ignoring the occasional cases when they

aren't true. Unlike everyday life, however, mathematical theorems can have no

exceptions, and only one counter-example is sufficient to disprove a mathematical

proposition. With "global refutation" is meant here the production of a logical

counter-example that meets the conditions of a statement, but refutes the conclusion,

and thus the validity of the statement.

Generally in mathematics, global counter-examples are also produced by

experimental testing, and usually not by deductive reasoning. Consider the following

false conjecture from elementary geometry: "a quadrilateral with perpendicular

diagonals is a kite". To construct a counter-example for this statement it is only

necessary to check experimentally whether sufficient information is provided for the

construction of a kite. If one now constructs two perpendicular diagonals and let the

various segments have arbitrary lengths as shown in Figure 2, one easily finds that the

constructed figure is not necessarily a kite. Similarly, one would not use deduction to

construct counter-examples for conjectures such as "a quadrilateral with equal

diagonals is an isosceles trapezoid" or "6x - 1 is a prime number for all x = 1, 2, 3,

etc.", but experimental testing.

Figure 2



There are many examples from the history of mathematics that clearly illustrate how

experimental testing generated counter-examples, though sometimes taking many

years. For example, in the fifth century BC Chinese mathematicians already made the

conjecture that if 2n − 2 is divisible by n then n is a prime number. If this was true it

would have been valuable for determining the primality of a number, as then one

would only have to carry out the division of 2n − 2 by n. Approaching the conjecture

inductively, one finds: 23 − 2, 25 − 2, 27 − 2 are divisible by the primes 3, 5 and 7,

but 24 − 2, 26 − 2, 28 − 2 are not divisible by the composite numbers 4, 6 and 8.

It turns out that experimental investigation supports the conjecture up to

2340 − 2 (a very large number indeed!). In all these cases 2n − 2 is divisible by n when

n is prime, and not divisible by n when it is composite. However, this conjecture was

disproved only in 1819 when it was found that 2341− 2 is divisible by 341, but 341 is

not prime since 341 = 11 ×  31.

HEURISTIC REFUTATION

With reference to the historical development of the Euler-Descartes theorem, Lakatos

(1983) argues that proof is not a mechanical and infallible procedure for obtaining

truth and certainty in mathematics. Instead he views proof as a collection of

explanations, justifications and interpretations which become increasingly more

acceptable with the continued absence of counter-examples.

An important distinction often not picked up by a naive, casual or

mathematically inexperienced reader of Lakatos is that between global counter-

examples, and "local" or "heuristic" counter-examples. Whereas the former, like

those in the previous paragraph completely disprove a statement, the latter challenge

perhaps only one step in a logical argument or merely aspects of the domain of

validity of the proposition. Heuristic counter-examples are mostly not strictly logical

counter-examples, since they are after all not inconsistent with the conjecture in its

intended interpretation, but are heuristic, since they spur the growth of knowledge.

Additional experimental testing of an already proved statement may therefore

sometimes assist one in finding subtle gaps in a proof or in the formulation of a

theorem. Let me illustrate this with a very simple personal example in relation to the

earlier mentioned dual conjectures regarding vertical line and point symmetric

functions, namely:
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(1) A differentiable function in the plane is reflective symmetric around a vertical

axis y = a if and only if its derivative is point symmetric around the point (a;

0);

(2)  A differentiable function in the plane is point symmetric around a point (a; b)

if and only if its derivative is reflective symmetric around the axis y = a.

Figure 3

After providing proofs for these two conjectures, both geometric and analytic, I was

somewhat later idly considering the discontinuous function defined by y = − x for

x < −2; y = 2 for x = 0 and y = x for x > 2 as shown in Figure 3a. Clearly the

derivative (
dy

dx
= −1 for x < −2 and 

dy

dx
= 1 for x > 2) is point symmetric around

(0;0). However, consider now the function y = − x for x < −2; y = 2 for x = −1 and

y = x for x > 2 shown in Figure 3b. Note that the reflective symmetry is now

destroyed, but its derivative remains point symmetric around (0;0).

So here I had a counter-example to the converse part of Theorem 1! But how

could this be? Had I not already proved these theorems?

However, proceeding to check my proofs, I quickly realised that the proofs

only referred to the differentiable parts of the function, and that these would be

symmetrical, even if the function as a whole is not symmetrical. All that was required,

therefore, was to reformulate the two theorems more precisely as follows:

(1) The differentiable parts of a function in the plane are reflective symmetric

around a vertical axis y = a if and only if the derivatives of these parts are

point symmetric around the point (a; 0);

(2) The differentiable parts of a function in the plane are point symmetric around

a point (a; b) if and only if the derivatives of these parts are reflective

symmetric around the axis y = a.
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UNDERSTANDING

As already mentioned in the previous section, the experimental investigation and

evaluation of already proved results, can sometimes lead to new perspectives and a

deeper understanding or extension of earlier concepts and definitions. Indeed, it is a

common practice among mathematicians while reading someone else's mathematical

paper to look at special or limiting cases to help them unpack and understand not only

the results better, but also the proofs. During our own research, it can also sometimes

assist us to more rigorously define our intuitive concepts, which can in turn lead to

new investigations in hitherto uncharted directions.

 For example, based on some research described in De Villiers (1989), I was

made to realise that the concept of "interior" angles of complex polygons, with sides

criss-crossing each other, was not so intuitively obvious as it may seem. Indeed, the

"interior" angle of a crossed polygon could actually sometimes lie "outside"!

This counter-intuitive observation would probably not have been possible

without experimental investigation. It also helped me to rethink carefully the meaning

of interior angles in such cases, eventually coming up with a consistent, workable

definition.

Figure 4

Using this definition, I next made another surprising, counter-intuitive discovery,

namely, that the interior angle sum of a crossed quadrilateral is always 720° (see

Figure 4a). Indeed, this specific example can be used as a simple, but authentic

illustration of the method of heuristic refutation, and works extremely well at the high

school level, as well as with mathematics teachers (see De Villiers, 2003).
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In fact, almost without exception, the first reaction of most people when

confronted with the type of figure shown in Figure 4b, and asked to determine its

interior angle sum, is that of "monster-barring"; i.e. a blunt rejection of such a figure

as a quadrilateral. A very common response is to argue that it can't be a quadrilateral,

since its angle sum is not 360°. Another response is sometimes to say we should just

add the two opposite angles where the two sides BC and AD intersect to ensure that

the angle sum is still 360° (despite 6 angles now being involved!).

Clearly what is at stake here is what we choose to understand under the

concepts "quadrilateral", "vertex" and "interior angle", and not the validity of the

result that the angle sum of convex and concave quadrilaterals is 360° - that is

undisputed. In fact, mathematically the situation can easily be resolved either by

defining quadrilaterals in such a way as to exclude crossed quadrilaterals or simply to

explicitly state in the formulation of the theorem that it only applies to simple closed

quadrilaterals (convex and concave).

Figure 5

However, experimental investigation can also sometimes contribute to the discovery

of a hidden clue or underlying structure of a problem leading eventually to the

construction/invention of a proof. For example, consider Figure 5 showing equilateral

triangles on the sides of an arbitrary triangle, and that the lines DC, EA and FB are

concurrent (in the so-called Fermat-Torricelli point). Noting by dragging with
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dynamic geometry, or otherwise, that the six angles surrounding point O are all equal,

can assist one to recognise FAOB, DBOC and ECOA as cyclic quadrilaterals, setting

one well on the way to constructing a synthetic proof.

EXPERIMENTAL-DEDUCTIVE INTERPLAY

Undoubtedly, in everyday research mathematics, quasi-empiricism and deduction

complement each other, rather than oppose. Generally, our mathematical certainty

does not rest exclusively on either logico-deductive methods or quasi-empiricism, but

usually on a healthy combination of both. Intuitive thought and experimental

experience broaden and enrich, and do not only stimulate deductive reflection, but can

contribute to the critical quality of such deductive reflection by the provision of

heuristic counter-examples. Intuitive, informal (experimental) mathematics is

therefore an integral part of genuine mathematics.

The limitations of intuition and experimental investigation should also not be

forgotten. Even George Polya (1954:v), famous advocate for heuristic, informal

mathematics, warns that intuitive, experimental thinking on its own can be

"hazardous" and "controversial". A good example is that of Cauchy who had the

popular intuition of his time that the continuity of a function implied its

differentiability. However, at the end of the 19th century, Weierstrass stunned the

mathematical community by producing a continuous function that was not

differentiable in any point!

Presumably inspired by Fermat's Last Theorem, Euler also conjectured that

there were no integer solutions to the following equation:

x4 + y4 + z4 = w4

For two hundred years nobody could find a proof nor could anyone disprove it by

providing a counter-example. First calculation by hand and then years of computer

sifting failed to provide a counter-example, namely, a set of integer solutions. Indeed

many mathematicians started believing it was true, and that it was probably only

going to be a matter of time before someone came up with a proof. However, then in

1988 Naom Elkies from Harvard University discovered the following counter-

example:

26824404 + 153656394 + 187967604 = 206156734.
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An even more spectacular example of the danger of reliance on only experimental

evidence is the following from Rotman (1998:3):

Investigate whether S(n) = 991n2  + 1 is a perfect square or not. What do you

notice? Can you prove your observations?

Random numerical investigation for several n is likely to show that 991n2  + 1 is not a

perfect square. In fact, the statement is true for all n until:

n =  12 055 735 790 331 359 447 442 538 767

≈ 1.2×1029

Despite having so much evidence - far more evidence than there have been days on

earth - the conjecture turns out to be FALSE!

Indeed, nobody today can really be considered mathematically educated or

literate, if that person is not aware of the insufficiency of only experimental evidence

to guarantee truth in mathematics, no matter however convincing that evidence may

seem.

Besides not providing sufficient certainty, experimental evidence as pointed

out earlier, also seldom provides satisfactory explanations. As a result, deductive

proofs are invaluable to explain, justify, and systematise our mathematical results. In

addition, proving results may in turn lead to further generalisations or spawn research

in different directions.

In a similar vein, the research mathematician Gian-Carlo Rota (1997:190)

pointed out, regarding the recent proof of Fermat's Last Theorem, that the value of the

proof goes far beyond that of mere verification of the result:

"The actual value of what Wiles and his collaborators did is far greater than

the mere proof of a whimsical conjecture. The point of the proof of Fermat's

last theorem is to open up new possibilities for mathematics. ... The value of

Wiles's proof lies not in what it proves, but in what it opens up, in what it

makes possible."

CONCLUSION

It is simply intellectually dishonest to pretend in the classroom that conviction only

comes from deductive reasoning or that adult mathematicians never experimentally

investigate conjectures and already proved results. Why deny students the opportunity

to explore conjectures and results experimentally when we as adult mathematicians



quite often indulge in such activities in our own research? Even though such testing

by students may not produce any heuristic counter-examples, it may still help students

better understand the propositional meaning of a theorem.  
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