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 NOTES 321

 Pair Eight: With magic sum 110

 11 I 24 1 32 1 43 1 1 11 1 42 I 23 1 34

 J3_JĒLJž__^L ~33"Ī4"4Ī vT
 44 31 23 12 44 13 32 21

 "^i^J^J^L ~22~~l 14~~43~
 The above procedure works for any order except 2, 3, and 6. It has been

 shown that orthogonal diagonal Latin squares exist for every finite order
 except 2, 3 and 6 (for more details, see [6, 7]).

 Acknowledgment: I would like to thank the referees for their suggestions
 and comments.
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 91.50 A generalisation of Feynman's triangle
 Introduction

 The original note on Feynman's triangle [1] stimulated considerable
 interest and generated two responses [2, 3]. These introduced the general
 Feynman triangle UVW for AABC as shown in Figure 1 in which

 BL _ J_ ÇM_! ^ _ ļ
 LC ~ /' MA " m NB ~ n

 and H, hv, hv, hw are the vertical heights of A, U, V, W above BC
 respectively. This note is concerned mainly with the case / = m - n = p.
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 FIGURE 1

 The following formulae are required (with the standard notation of AABC):

 A ŗr + p + 1

 (given in the Feedback, Feynman's triangle corresponding to the case
 P = 2).

 h£ = 1 hv_ = P hw = P2 (3)
 H f+p+ï H ft+p+ï H pï+p+1

 LU AB = AVBC = AWCA = - -

 /72+/7+ 1

 (p2 +p + ifwU2 = (p- \f[(pc + ¿?cosA)2 + b2 sin2A] (5)

 (p2 + p+ l)cotZWUV = (p+ I)coti4 + /?(/?+ l)cotB-pcotC (6)
 For more information see the postscript.

 The distinctive ranges ofp

 The graph of S (p) is continuous as the equation p2 + p + 1 =0 has
 no real roots and the turning points are given via

 dS = 3(p- l)(p+ 1) =
 4P (P2 + /> + I)2

 where the minimum 5(1) = 0 corresponds to S (p) > OandS(-l) = 4 is
 the maximum. The curve is shown in Figure 2, which identifies the ranges
 p > 1, 1 > p > 0, 0 > p > -1,-1 > p, with£L = ßCwhen/? = 0.
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 FIGURE 2

 The inverse formula forp

 The equation S(p) = m, which is valid for 0 < m < 4, with m * 1,
 has either two positive roots or two negative roots given by

 p2 - 2kp + 1 = 0 with k = 22*mmy (7)
 As the product of the roots is one, S(£) = 5(p), which is easily checked in (2).
 The inverse formula is s{k ± \lk2-\) = m with k - \/k2 - 1 = 1 l{k + V*2-l).

 For example

 5(2) = i = s(i)and5(-|) = 3 = 5(-2).

 The positive ranges

 Figure 1 has been drawn to illustrate the range p > 1. Notice that the
 diagram clearly shows

 hu < hv < hw < H

 in agreement with (3). When p = 1, L, M and N are the mid-points of their
 respective sides and AUVW reduces to the centroid G, which is consistent
 with (2) and (5). From (3), in this case

 TJ

 hv = hy = hw = - = hG,

 which is a special case of the general result

 hv + hy + hw = H.

 From (6), cot ZAGÏÏ + cot ZBGC + cot ZCGÄ = cot A + cot B + cot C,
 where A', # and C" are the midpoints of BC, CA and AB. This identity can
 be checked independently and is a useful exercise for the cotangent rule [4].
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 The configuration for the range 1 > p > 0 is shown in Figure 3 where
 BL > LC etc. and the notation is consistent with Figure 1.

 FIGURE 3

 In this case, hw < hv < hv < H, which is again consistent with (3).
 When p = 0, LC = MA = NB = 0 and A U V W is coincident with AABC,
 which is consistent with (3), (5) and (6). Following on from (7) any AUVW
 in Figure 3 has the same area as one of the triangles UVW in Figure 1.
 Identify these triangles with a suffix corresponding to their Figure so that

 BLi 1 BLs 1 u CLi 1
 LXC /?! UC P3 Uß Pi

 So, not surprisingly, a Feynman triangle can be defined by specifying the
 ratios in a clockwise sense from C rather than anticlockwise from B. This is

 implied in [1]. In general, these two triangles are not congruent, which only
 occurs when AABC is isosceles as can be verified by (5) and (6). However,
 when the two triangles are drawn in the same AABC then
 Vi V3IIBCIIUX W3//W1C/3, which can be confirmed by the height formula (3).

 The negative ranges

 In the range 0 > p > -1, the negativity of p shows that L, M and Af
 are external to their sides. As BL > CL so L is on the extension beyond C
 and similarly for M and Af as shown in Figure 4.

 FIGURE 4
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 NOTES 325

 As p - > 0 so L moves back towards C in comparison with its forward
 movement in Figure 2. From (4) the external triangles UAB, VBC and WCA
 are algebraically negative so that

 AABC - 3AUAB = AUVW

 is greater than AABC for Figure 4, whereas it is less than AABC for
 Figure 2. The simple result S (-£) = 3 corresponds to hw = \H and it is a
 useful exercise to draw the relevant diagram and to give alternative proofs
 by similar triangles and the cotangent rule.

 The points L, M and N are also external to their sides in the final range
 -1 > p, but now they lie on the other extensions. A diagram will show
 AUVW tilted in the opposite sense to Figure 3. There is a discontinuity in p
 on AB with L moving towards B from the left as p - > -oo, but L moving to
 B from the right in Figure 1 as p - » +<*>. Again there is a family of parallel
 lines when the two triangles of equal area for both negative ranges are
 drawn on the same AABC. Again these can be identified by suffices
 corresponding to Figures 3 and 4.

 The area of AUVW is maximum with S(-l) = 4 when

 AABC = A = AU AB = AVBC = AWCA. From - = -, BL = -^-, so
 LC p p + 1

 L is at an infinite distance from B, which agrees with LB = LC as BC has
 become insignificant. This implies ALII CB and similarly BMI I AC, CNIIBA
 as shown in Figure 5. To appreciate this limiting configuration, it is helpful
 to draw a small triangle ABC so that BL, CM and AN can be made relatively
 long. The triangle of maximum area is shown in Figure 5.

 FIGURE 5

 This diagram clearly satisfies the area requirements of the triangles and
 agrees with (3), (5) and (6).
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 Postscript

 The formulae corresponding to (3), (4), (5) and (6) for the general ratios
 (l)are:

 W (i) hJL = (i) W H = m/ + m + 1 H = /n + / + 1
 from a combination of Menelaus' theorem for AU I UL and AW I WL with

 similar triangles.

 (ii) AWCA = AALC - AWLC =

 In + / + 1
 h n

 and, from cyclic change to AVBC, - =
 H nm + n + 1

 (iii) AUVW = AABC - (AUAB + AVBC + AWCÁ)

 (In + I + I) (ml + m + \)(nm + n + 1)'
 which is called Routh's theorem in [3].

 (In + / + l)2WU2 _ (le + b cosA)2 + fr2 sin2 A
 (Imn - I)2 ~ (m/ + m + I)2

 from WU = A£/ - AVT in terms of AL, with AL2 given by generalising
 Apollonius1 theorem for AABC.

 (v) (ml + m+ \)œtZWUV = (/ + l)cotA + Z(m + l)cot£- mcotC
 from the application of the cotangent rule to AABL and AABC.

 Acknowledgement
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 referee's suggestion that the original should be reorganised.
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 91.51 Heron triangles with ZB = 2ZA
 This note characterises all Heron triangles ABC (that is, triangles ABC

 with integer sides and integer area) having ZB = 2ZA. Deshpande [1]
 showed that triangles with sides

 a = n , b = nm, c = m2 - n2, (1)
 for integer m, n with 0 < n < m < 2n, have ZB = 2ZA (denoting sides
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