
1

Paper presented at PME-21, Lahti, Finland, July 14-19, 1997

Published in Mathematics in College, 2000, pp. 10-29.

A FIBONACCI GENERALIZATION: A LAKATOSIAN EXAMPLE

Michael de Villiers, Mathematics Education,

 University of Durban-Westville, South Africa

e-mail: mdevilli@pixie.udw.ac.za

This paper presents a generalization of the Fibonacci series which roughly

followed a Lakatosian heuristic. Using this example, some general comments will

be made regarding the processes of discovery and invention in mathematics, and

its relevance to the history and philosophy of mathematics.

In this paper a generalization of the Fibonacci series which roughly followed a

Lakatosian heuristic will be presented. This example illustrates the often

important interplay between quasi-empirical investigation and logical analysis in

the production of mathematical knowledge.

Afterwards, there will be a brief reflection not only on the role and limitations of

quasi-empirical methods in relation to this particular example, but also in general

in mathematical research. A personal model of how new discoveries are sometimes

made in mathematics which incorporate these perspectives will also briefly be

discussed. Lastly, some comments regarding the nature and philosophy of

mathematics will be made.

DE JAGER'S PAPER

Some years ago, Tiekie de Jager, a gifted high school teacher at Rondebosch Boys'

High School in Cape Town, South Africa gave the following problem to his Grade 9

pupils to explore:

Problem

Consider the following series:

(a) 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 + ...

(b) 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 + ...

In each case find the sum of the bold terms. What do you notice? Try your idea in

some other cases.

This is the well-known Fibonacci series that the children already knew. In other

words, they already knew that if we call the nth term Tn, each term could easily be

constructed by the rule Tn + Tn+1 = Tn+2. From the above calculations, the
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children then noticed that if the sum to n terms was called Sn, then the following

pattern arose: 1 + Sn = Tn+2.

Further Investigation

Upon asking the children to explore variations on this rule, one child suggested

that they could perhaps try and find a similar series in which 1 + Sn = Tn+3. With

the aid of Tiekie, the children then found the following series:

1 + 1 + 1 + 2 + 3 + 4 + 6 + 9 + 13 + 19 + 28 + ...      

which is formed by the following rule: Tn + Tn+2 = Tn+3.

Soon the following series was also found:

1 + 1 + 1 + 1 + 2 + 3 + 4 + 5 + 7 + 10 + 14 +19 + ...      

which is formed by the rule: Tn + Tn+3 = Tn+4 and has the property that 1 + Sn =

Tn+4.

The next question was whether it was possible to find a series so that 1 + Sn = Tn+1.

Soon the following series was found:

1 + 2 + 4 + 8 + 16 + 32 + 64 + ...      

Generalization

This information was then summarized as follows in a table:

Rule Adding property

Tn + Tn = Tn+1 1 + Sn = Tn+1

Tn + Tn+1 = Tn+2 1 + Sn = Tn+2

Tn + Tn+2 = Tn+3 1 + Sn = Tn+3

Tn + Tn+3 = Tn+4 1 + Sn = Tn+4

which naturally led to the following generalization:

A series has the property 1 + Sn = Tn+k+1, if and only if, it is generated by the rule

Tn + Tn+k = Tn+k+1.

By this time several other classes of Tiekie de Jager had become involved in the

investigation, and one of his top Grade 11 pupils, Shannon Kendal, eventually

produced the following proof. It was based on the assumption of the following two

statements (which follow automatically from the notation):

(a) Sn = Sn-1 + Tn

(b) If Tn+k+1 = 1 + Sn, then 1 + Sn-1 = Tn+k  (n becomes n-1)

Proof

Tn+k+1 = 1 + Sn

  <=> Tn+k+1 = 1 + Sn-1 + Tn       ... by (a)
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  <=> Tn+k+1 = Tn+k + Tn            ... by (b)

Tiekie presented this investigation at the 1989 National Convention of Mathematics

and Science Teachers in Pretoria and later published it as part of a paper on

Pattern Finding in Pythagoras, a South African mathematics education journal

(De Jager, 1990).

COUNTER-EXAMPLES

After first reading through the above examples, the plausible generalization and

convincing proof, I was initially inclined to accept the validity of the result and

its proof without reservation. However, upon later testing it by specific examples

to get a better feeling for the result, I found some problems with it as reported in

De Villiers (1990). For example, after posing the question to find (construct) a

series in which 1 + Sn = Tn+3, the following series was produced by Tiekie and his

students: 1 + 1 + 1 + 2 +3 + 4 + ... Of course, if we choose T1 = 1, then according to 1 +

Sn = Tn+3 the fourth term T4 must be 1 + S1 = 2. However, this does not necessarily

imply that the second and third terms should necessarily both be 1. For instance if

we choose both T2 and T3 equal to 2, we have according to 1 + Sn = Tn+3, 1 + S2 = 4 =

T2+3 = T5 and 1 + S3 = 6 = T3+3 = T6, giving us the series:

1 + 2 + 2 + 2 + 4 + 6 + 8 + ...

But is Tn + Tn+2 = Tn+3 always true for this series as alleged? Unfortunately not, as

T1 + T3 = 1 + 2 = 3 which is not equal to T4. So here we have a counter-example  to

Kendal's theorem! Similarly, if we choose 2 as the first term, it is possible to

construct the following series: 2 + 2 + 3 + 3 + 5 + 8 + 11 ... with the property 1 + Sn =

Tn+3, but T1 + T2 = 2 + 3 = 5 which is not equal to T4. Similar counter-examples can

easily be constructed for other values of k.

But what about the converse? Is it really true that a series which is constructed by

the rule Tn + Tn+k = Tn+k+1 necessarily has the property that 1 + Sn = Tn+k+1? Let

us again consider the case k = 2, therefore the rule Tn + Tn+2 = Tn+3. If we choose

T1 = 1 and T3 = 3, we have T4 = 4. If we now choose T2 = 2, we have T5 = 6, giving us

the series: 1 + 2 + 3 + 4 + 6 + 9 + ... Is 1 + Sn = Tn+3 for this series? Unfortunately the

answer is again no, as 1 + S1 = 2 and that is not equal to T4. Similar counter-

examples can be constructed for other values of k.

Should we therefore simply dismiss Kendal's theorem as invalid? Or is there still

something worthwhile saving? This was the challenge given to readers of

Pythagoras in a letter (see De Villiers, 1990).
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SCHUTTE'S RESPONSE

Schutte (1991) responded as follows: Firstly, he argued that my first counter-

example was not valid. For example, he claimed that in order to make T1 + T3 equal

to T4, one had to make sure that 1 + S0 = T3 since n has the value of 1 (according to

the assumption 1 + Sn-1 = Tn+k). But 1 + S0 ≠  T3 since S0 is undefined. Therefore it

does not necessarily follow that T1 + T3 = T4 because the conditions of the theorem

are not met; thus my counter-example is invalid.

Secondly, he pointed out that my second counter-example (to show that 1 +

Sn = Tn+k+1 does not follow from Tn + Tn+k = Tn+k+1) is successful as the converse

part of Kendal's proof is faulty. The converse part starts as follows:

Tn+k+1 = Tn+k + Tn

    => Tn+k+1 = 1 + Sn-1 + Tn

Here Tn+k is replaced by 1 + Sn-1. This can only be done if Tn+k+1 = 1 + Sn is

already assumed as true. But this is exactly the formula which has to be proved!

Hence the proof for the converse is circular and consequently invalid. The

counter-example shows that the proof is incorrect.

DU TOIT'S RESPONSE

Du Toit (1991) similarly argued in regard to the forward implication that since T0

and S0 are both undefined, the theorem was limited to integer values of n greater

than 1 (as indicated by my counter-example), and that to rectify the situation one

only had to explicitly state this restriction for the forward implication.

Regarding my second counter-example: 1 + 2 + 3 + 4 + 6 + 9 ... which was developed

according to the rule Tn + Tn+k = Tn+k+1 with k = 2, he pointed out that in this case

1 + Sn was not equal to Tn+k+1 for any n. (As can easily be checked by the reader).

However if one starts looking for a pattern in this series, one finds that Tn+k+1 -

Sn gives a constant difference of 3 for all n; in other words, it is equal to T3.

Next he considered k = 4. The first k  + 1 terms can be chosen arbitrarily: 7 - 5 + 8 +

2 +20. Develop further according to the rule Tn + Tn+k = Tn+k+1; T6 = T1 + T5 = 27; T7

= T2 + T6 = 22; T8 = T3 + T7 = 30; etc. This gives the series:

7 - 5 + 8 + 2 + 20 + 27 + 22 + 30 + 32 + 52 + ...

This gives: S1 + 20 = T6

S2 + 20 = T7

S3 + 20 = T8

and since T5 = 20, this gives the generalization: Tn+k+1 = Sn + Tk+1.

He then gave the following reformulation of Kendal's theorem:

If Tn is the nth term and Sn is the sum to n terms of a series then for all n > 1:
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Tk+1 + Sn = Tn+k+1 <=> Tn + Tn+k = Tn+k+1.

This was followed by a proof of the forward implication: If Tk+1 + Sn = Tn+k+1,

then for all n > 1, Tn + Tn+k = Tn+k+1, by adapting Kendal's method.

Proof

(a) Sn = Sn-1 + Tn

(b) Tn+k+1 = Tk+1 + Sn <=> Tn+k = Tk+1 + Sn-1 (n is replaced by n - 1).

Tn+k+1 = Tk+1 + Sn

   => Tn+k+1 = Tk+1 + Sn-1 +Tn  ... from (a)

   => Tn+k+1 = Tn+k + Tn ... from (b)

The converse: If Tn + Tn+k = Tn+k+1, then for all n, Tk+1 + Sn = Tn+k+1, was then

proved using mathematical induction.

Proof

Assume it is true for n = p; therefore that the following is true:

If Tp + Tp+k = Tp+k+1 then Tk+1 + Sp = Tp+k+1.

Now consider n = p + 1:

     Tp+1+k+1 = Tp+1 + Tp+1+k

= Tp+1 + Sp + Tk+1

= Sp+1 + Tk+1.

Therefore if the statement is true for n =  p, it is also true for n = p + 1. But if T1 +

T1+k = T1+k+1, then S1 + T1+k = T1+k+1 (T1 = S1) and the statement is therefore true

for n = 1; and therefore also for n = 2; etc.

THE MEANING OF S0

In the November 1991 issue of Pythagoras, I again responded to Schutte and Du

Toit's analysis as follows (De Villiers, 1991). In his letter, Schutte claimed that the

following counter-example I gave for Kendal's original forward implication (if a

series is constructed by the rule 1 + Sn = Tn+k+1 then Tn + Tn+k = Tn+k+1) is

invalid:

1 + 2 + 2 + 2 + 4 + 6 + 8 + ...   (k = 2)

Although it is true for this series that T2 + T4 = T5, T3 + T5 = T6, etc., I pointed out

that it is not true for n = 1, since T1 + T3 ≠  T4.

The gist of Schutte's argument was that according to the assumption (b) in the

original proof: 1 + Sn-1 = Tn+k, I should have ensured that 1 + S0 = T3 since n is

given the value of 1. But 1 + S0 cannot equal T3 since S0 is undefined, and

therefore the conditions of the theorem are not met and the counter-example is

invalid.
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To this I responded by saying that using this very same argument it would also

follow that 1 + S0 in the original example 1 + 1 + 1 + 2 + 3 + 4 + ..., also cannot equal

T3 since S0 is undefined. This is furthermore true for any chosen T3, or in

general for any chosen Tk+1, and therefore the logical consequence of this

argument by Schutte would be that no series can ever be constructed according to

the rule 1 + Sn = Tn+k+1, since no satisfactory Tk+1 can ever be chosen! Thus

strictly according to Schutte's argument, Kendal's forward implication would

become a totally contentless theorem ; ie. a theorem about a series which cannot

be constructed.

The point that I therefore made was that S0 actually becomes (or needs to become)

implicitly defined in the construction of such a series, even though S0 has no

meaning (is undefined) in the traditional sense in terms of the sum of the first n

terms. (An analogous example is the necessity to define a0 =1 , although it at first

appears a meaningless statement). For example for k = 2, S0 = 0 in the original

series 1 + 1 + 1 + 2 + 3 + 4 + ..., but for the two series 1 + 2 + 2 + 2 + 4 + 6 + 8 + .. and 2 +

2 + 3 + 3 + 5 + 8 + 11 + ... we respectively have S0 = 1 and S0 = 2. In fact, it follows

directly from the assumption (b) in the original proof: 1 + Sn-1 = Tn+k that in

general S0 = Tk+1 - 1.

I then continued by asking the critical question: why the relationship is true for

n = 1 for the original series 1 + 1 + 1 + 2 + 3 + 4 + ... (as well as the other examples

given by Tiekie), but not for series like 1 + 2 + 2 + 2 + 4 + 6 + 8 + .. and 2 + 2 + 3 + 3 +

5 + 8 + 11 + ... To simply say that S0 is "undefined" explains nothing at all (and in

fact is misleading), since we have seen that S0 becomes implicitly defined as Tk+1 -

1 when constructing such a series. The explanation lies elsewhere, namely with

the other assumption Sn = Sn-1 + Tn (assumption (a) in the original proof). If we

set n = 1 in this assumption we have S0 = S1 - T1 = 0. This assumption will therefore

be true for n = 1 only if we choose Tk+1 in such a way that S0 becomes 0 in S0 =

Tk+1 - 1; therefore Tk+1 must be 1. In other words, if we choose Tk+1 ≠  1 as in my

two examples above (where k = 2), assumption (a) becomes false for n = 1 (but is

still true for the other values of n); and therefore the conclusion that T1 + T3 must

be equal to T4 is also false.

The above analysis led me to the following generalization of the forward

implication:

If Tn is the nth term and Sn is the sum to n terms of a series, then for all n > 1:

C + Sn = Tn+k+1 => Tn + Tn+k = Tn+k+1

where C is any real number and k ≥ 0 .

Proof
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(a) Sn = Sn-1 + Tn         ... n > 1

(b) Tn+k+1 = C + Sn <=> Tn+k = C + Sn-1 (n is replaced by n - 1).

Tn+k+1 = C + Sn

   => Tn+k+1 = C + Sn-1 +Tn  ... from (a)

   => Tn+k+1 = Tn+k + Tn ... from (b)

In order to construct a series of this type, S0 becomes implicitly defined as S0 =

Tk+1 - C (from assumption (b)). Note however that we still have from assumption

(a) that S0 = S1 - T1 = 0. Assumption (a) will therefore be true for n = 1 only if we

choose Tk+1 in such a way that S0 becomes 0 in S0 = Tk+1 - C; therefore Tk+1 must

be equal to C. In other words, if we choose Tk+1 ≠  C, assumption (a) becomes false

for n = 1 (but is still true for the other values of n); and therefore the conclusion

that T1 + Tk+1 must be equal to Tk+2 also becomes false.

Example 1 (Tk+1 ≠  C)

Suppose for k = 2 we arbitrarily choose T1 = 1 and C = -3. Then from the rule C + Sn =

Tn+k+1, it follows that T4 = -3 + 1 = -2. If we now also arbitrarily choose T2 = 6 and

T3 not equal to C, say T3 = -4 (or equivalently choose S0 = -1 from assumption (b)),

we can construct the series:

1 + 6 - 4 - 2 + 4 + 0 - 2 + 2 + 2 + 0 + 2 + 4 + ...

Here we clearly have:

T2 + T4 = 6 + (-2) = 4 = T5;

T3 + T5 = -4 + 4 = 0 = T6;

T4 + T6 = -2 + 0 = T7; etc.

Note however that since Tk+1 ≠  C, assumption (a) is not valid for  n = 1, and

therefore T1 + T3 = 1 + (-4) = -3 ≠  T4.

Example 2 (Tk+1 = C)

Suppose for k = 2 we arbitrarily choose T1 = 1 and C = -3. Then from the rule C + Sn =

Tn+k+1, it follows that T4 = -3 + 1 = -2. If we now also arbitrarily choose T2 = 6 and

T3 equal to C, ie. T3 = -3 (or equivalently choose S0 = 0 from assumption (b)), we can

construct the series:

1 + 6 - 3 - 2 + 4 + 1 - 1 + 3 + 4 + 3 + 6 + 10 + ...

Here we clearly have:

T1 + T3 = 1 + (-3) = -2 = T4;

T2 + T4 = 6 + (-2) = 4 = T5;

T3 + T5 = -3 + 4 = 1 = T6; etc.

Note here that since Tk+1 = C, assumption (a) is valid for  n = 1, and therefore T1 +

T3 = T4.
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Also note in the special case formulated by Du Toit, namely, that:

"If Tn is the nth term and Sn is the sum to n terms of a series, then for all n > 1:

Tk+1 + Sn = Tn+k+1 <=> Tn + Tn+k = Tn+k+1"

the restriction n > 1 (for the forward implication) is not necessary as it is valid for

n = 1, since C = Tk+1; ie. this special case is valid for all n.

Alternative Proof for Converse

In conclusion, I also gave the following alternative proof for the converse (which

to me personally was more explanatory).

The converse: If Tn + Tn+k = Tn+k+1, then for all n, Tk+1 + Sn = Tn+k+1 where

k ≥ 0 .

Proof

Firstly write the consecutive terms of the series as the following differences:

T1 = Tk+2 - Tk+1

T2 = Tk+3 - Tk+2

T3 = Tk+4 - Tk+3

.

.

.

Tn-1 = Tk+n - Tk+n-1

Tn = Tk+n+1 - Tk+n

Then adding up the left and right columns respectively, we find the desired result

Sn = Tk+n+1 - Tk+1 or Sn + Tk+1 = Tn+k+1.

REFLECTION

The role of quasi-empirical testing

Let us now briefly reflect on the role of quasi-empirical testing in this example.

Firstly we saw that it was the construction of four different series, and the

observation of the underlying pattern, that led Tiekie de Jager and his students to

formulating Kendal's theorem. This was followed up by the construction of a very

convincing argument which appeared to validate the result.

Unfortunately we sometimes have a tendency to sit back and relax once a

new theorem is proved and to rub our hands in satisfaction that its truth has been

established. However as this example has shown, it is sometimes useful to check

proven results by quasi-empirical testing as it may expose problems with our

proof and/or formulation of the result. In this particular case, my counter-

examples eventually not only led to identifying the circularity in the proof of the

converse, but also in a precise formulation of a further generalization. In other
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words, pupils who exhibit a further need for empirical testing after a formal proof

(as reported by Fischbein, 1982) should not be too harshly criticized.

Furthermore, Du Toit also first looked at special cases to find a pattern

which led to his formulation and proof of a generalization of the converse (and

forward implication). The subtle point that S0 needs to be defined as S0 = Tk+1 - C

in order to construct a series according to the rule C + Sn = Tn+k+1 in the forward

implication also only became apparent from the actual construction of such

series. In other words, without the quasi-empirical experience of actually

constructing such series according to the rule C + Sn = Tn+k+1, one could easily

interpret S0 simply as "undefined".

Schutte's rejection of my counter-example for the forward implication is in

many respects similar to the technique of "monster-barring in defence of the

theorem" described by Lakatos (1983). Since refutation by counter-example

usually depends on the meaning of the terms involved, definitions are frequently

proposed and argued about. In this particular case, it revolved around the

meaning (definition) of S0 as I pointed out in my last letter. A similar situation is

described by Lakatos (1983:16) where, after the discovery of a counter-example to

the Euler-Descartes theorem for polyhedra, the characters in his book then

vehemently argue about whether to accept or reject the counter-example, for

example:

"DELTA: But why accept the counter-example? We proved our conjecture -

now it is a theorem. I admit that it clashes with this so-called 'counter-

example'. One of them has to give way. But why should the theorem give

way, when it has been proved? It is the `criticism' that should retreat. It is

fake criticism. This pair of nested cubes is not a polyhedron at all. It is a

monster, a pathological case, not a counter-example.

GAMMA: Why not? A polyhedron is a solid whose surface consists of

polygonal faces. And my counter-example is a solid bounded by polygonal

faces.

DELTA: Your definition is incorrect. A polyhedron must be a surface: it has

faces, edges, vertices, it can be deformed, stretched out on a blackboard, and

has nothing to do with the concept of 'solid'. A polyhedron is a surface

consisting of a system of polygons."

From the above extract, it is clear that refutation by counter-example in the

Lakatosian model depends on the meaning of the terms involved and consequently

definitions are frequently proposed and argued about.

The psychology of mathematical discovery and proof

What follows now is a personal model of how new discoveries are sometimes made

in mathematics and is based on some of the explorations I have done in
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mathematics in the past, and will try to illustrate it in relation to the example we

have just had. There is no intention however to present it as a model which

encompasses the complex totality and rich diversity of mathematical discovery

and proof.

Logically, mathematics is based upon the following fundamental axiom:

"Something is true (T), if and only if, it can be (deductively) proved (P)" .

However, from a psychological perspective, it is often more useful to represent it

in the following equivalent, but different logical forms:

(a) the forward implication (T ⇒  P): if something is true, then it can be proved.

(b) the converse (P ⇒  T): if something has been proved, then it is true.

(c) the inverse (T' ⇒  P'): if something is false, then it cannot be proved.

(d) the contrapositive (P' ⇒  T'): if something cannot be proved, then it is false.

                            

Conjecture

Testing

Confirmation

(T -> P)

Proof

Successful

STOP

Counter-example

Reformulation or 

rejection
(T' -> P')

Reformulation or 
rejection

(T' -> P')

(P -> T)

Unsuccessful

(P' -> T')

(P -> T)

Figure 1

Unfortunately in textbooks and teaching only the converse (P ⇒  T) is usually

conveyed; in other words, that we must first prove results, before we can accept

them as true. However, in actual mathematical research as demonstrated in this

paper, the forward implication (T ⇒  P), its inverse (T' ⇒  P') and contrapositive

(P' ⇒  T') often play a far greater role in motivating and guiding our actions.

For example, suppose we inductively make a conjecture on the basis of some

pattern in specific cases such as the four series right at the beginning.  We might

then start believing it to be true, which according to the forward implication then

gives us the encouragement to start looking for a proof. However, if after a while

we are not successful in producing a proof, we might start doubting the validity of
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the conjecture according to the contrapositive, and then consider some more

cases, after which the whole process is of course repeated. If the conjecture is not

supported by these additional cases, we either reject it as false according to the

inverse (and longer even bother trying to prove it) or have to reformulate/refine

it. Furthermore, even though the converse logically implies that once it has been

proved,  then it must be true for all cases, additional testing as shown by dotted

line may be valuable in exposing problems in one's proof and/or formulation of

the result (as was so clearly shown in this example).

This process of conjecturing, testing, refuting, proving and reformulating

can sometimes (definitely not always!) go through several cycles and is

represented in Figure 1. In the above model, conviction is neither seen as the

exclusive prerogative of proof nor the only function of proof as that of

verification/conviction. To the contrary, as shown in this example, conviction

based on quasi-empirical exploration often precedes proof and is probably far

more frequently a prerequisite for the finding of a proof (compare De Villiers,

1997).

Of course, this immediately raises the question of why do we still feel a need

to prove results for which we have substantial quasi-empirical support. There are

many reasons such as the very real possibility that the observed pattern between

the series may break down, our need to understand (and explain) why the result is

true, the intellectual challenge of constructing a proof, etc. (compare De Villiers,

1990). The first two reasons above highlight two very serious shortcomings of

quasi-empirical exploration, namely, (1) that quasi-empirical testing provides no

guarantee for the general validity of the observed pattern, and (2) although

checking more and more cases may succeed in increasing one's level of

conviction, mere checking seldom provides any insight into why the pattern is

true; it simply confirms that it is true.

The nature and philosophy of mathematics

Fallibilism has become very popular amongst many mathematics educators in

recent years and can roughly be described as the view that mathematics is

fallible, contestable and just as subjective as other areas of knowledge. In some

quarters (eg. Borba & Skovsmose, 1997), fallibilism has also assumed the role of a

political ideology which is opposed to the traditional "ideology of absolutism and

certainty". To a fallibilist no knowledge (including mathematical knowledge) is

stable; it is constantly in a state of change, being challenged, refuted and

replaced. The fallibilist, therefore, strongly believes that the Lakatos model of

heuristic refutation provides an adequate description of the nature of

mathematics, as well as its discovery and invention. Fallibilist ideas also feature

strongly in the philosophy of "social constructivism" proposed by Ernest (1991).
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Although the Fibonacci example discussed here gives partial support to

such a view, I can probably give many more examples from my own mathematical

research which did not follow this pattern. As pointed out by Hanna (1995; 1996),

as well as the prominent mathematician John Conway in Sept 1995 on the

Mathematics Forum on the World Wide Web, it is not difficult to cite many

historical cases where the mathematical development was radically different from

the heuristic refutation described by Lakatos. As Conway pointed out:

"It is misleading to take this example (Euler-Descartes) as typical of the

development of mathematics. Most mathematical theorems do get proved,

and stay proved; the original proof may not be quite satisfactory

according to later standards of proof, but that is a fairly trivial matter."

In fact, we must remember that Lakatos himself generalized his philosophy from

the historical analysis of only two cases, namely, the Euler-Descartes theorem and

Cauchy's primitive conjecture for uniform convergence. As mathematicians, we

ought to know the dangers from generalizing too quickly from just a few cases! It

would appear as if Fallibilism is turning the exception into the rule.

Furthermore if we look carefully at the example we have discussed here:

from its initial generalization, formulation, primitive proof, counter-examples,

further exploration and refinement, we find that the result itself actually

underwent very little change; and its truth was never seriously in doubt. The

problem was more in carefully sorting out the underlying logic and precise

conditions of the theorem. The same applies to the Euler-Descartes theorem where

the formula V - E + F = 2 was never seriously questioned; the real problem was to

rigorously define the concept polyhedra and to develop a satisfactory general

proof that would cover all cases.

A general weakness of Fallibilism and the Lakatosian model is also that

these views could very easily degenerate into a kind of mathematical nihilism -

everything is doubtful and fallible. If that were the case, why then study or do

research in mathematics if everything was simply going to be disproved or

falsified tomorrow? To me personally, mathematics would then certainly not be

something sensible to engage in.

Fallibilists also frequently appear to confuse the heuristic counter-

examples of Lakatos with logical counter-examples; in other words, they seem to

interpret them as if they completely invalidate or falsify the original statement.

In the words of one of the fictional students of Lakatos (1983: 86) these counter-

examples are mostly not "logical counter-examples, since they are after all not

inconsistent with the conjecture in its intended interpretation", and instead calls

them "heuristic counter-examples since they spur the growth of knowledge." If

we carefully look back at the counter-examples I gave to Kendal's theorem

(particularly the one to the forward implication), then it becomes clear that they
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are more heuristic than logical; in other words, they did not completely refute the

original statement, but simply allowed for refinement and further generalization.

Furthermore, it is a highly questionable assumption of Fallibilism that this

process of proof and heuristic refutation can in principle carry on indefinitely.

Historical evidence, and this particular Fibonacci example, strongly indicate that

there are limits to this process. For example, although it is quite likely that

Kendal's theorem may be reformulated, further generalized, that alternative

proofs may be developed, etc., it has in the final version reached a point where we

can now say with certainty, since the proofs are valid, that the result is true, and

that no further (logical) counter-examples are possible. Any philosophy of

mathematics which does not acknowledge that we can attain this kind of certainty

in mathematics is unrealistic.

In attacking the Formalist, Platonist, Intuitionist and other philosophical

positions on the nature of mathematics, a radical fallibilist view is in danger of

throwing out the baby with the bathwater. The wonder and mystery of

mathematics is that despite our often fumbling in the dark, we can at some stage

reach a point where we have proved and clarified ambiguities, and when we can

say with certainty that something is true. Such an experience is liberating,

illuminating and empowering. At the same time it is  also extremely humbling that

despite our human fallibility and imperfections, we can at some stage arrive at

mathematical knowledge that is certain and infallible. To deny this, is to deny the

mathematical reality of meaning making experienced by countless practising

mathematicians.

Although radical fallibilism (and social constructivism) denies the

existence of mathematics as an independent, objective reality, the example

discussed here actually also tends to support a Platonistic view of mathematics,

namely, that mathematical objects like the Fibonacci series can have definite

(uncontestable and objective) properties (eg. like Kendal's theorem) that we may

or may not be able to discover. They are not mere social or cultural conventions,

but appear to pre-exist independently to the consciousness of any one person or

culture. Such a view is often necessary for research in mathematics, as it suggests

that there may still be thousands of patterns and properties waiting out there to be

discovered by any adventurous person. (The existence of a journal called the

Fibonacci Quarterly which is entirely devoted to the rich variety of patterns

and properties contained in the Fibonacci series clearly supports such a view).

The mathematician Connes for example describes a mathematician as "an explorer

setting out to discover the world" (see Tahta, 1996:19).

In conclusion, we should acknowledge that mathematics is one single, very

complex phenomenon, and that the Platonist, Formalist, Intuitionist, Fallibilist,

Socio-political and other views of it, all complement rather than oppose each
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other, since each contain an element of truth by providing a valuable perspective

from a certain angle (compare Davis & Hersh, 1983:358-359). The danger lies in not

recognizing the value of each of these different views and becoming dogmatically

or ideologically tied to a single, narrow perspective.   
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