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tan¡1 …x†, an alternative starting point could be the derivatives of the above

functions for which it is necessary to know that

d

dx
tan¡1 …x† ˆ 1

1 ‡ x2

and

d

dx
sinh¡1 …x† ˆ 1

…1 ‡ x2†1=2

Indeed, any of the derivatives of these functions, or the original function (1), can

be used as a starting point.

A Fibonacci generalization and its dual
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An interesting dual sequence for the Fibonacci sequence is presented in
which the consecutive terms are constructed via multiplication of the preceding
terms, instead of addition. Well-known results illustrating this duality are also
generalized, showing how these relate to generalizations of the golden ratio.

Symmetry as wide or as narrow as you may de® ne it, is one idea by which man
through the ages has tried to comprehend, and create order, beauty and perfection.
Hermann Weyl

1. Introduction
Duality is a special kind of symmetry. In everyday language, a common duality

exists between antonyms such as hot and cold, tall and short, love and hatred, male

and female, etc. The one concept is de® ned by and understood in terms of the

other, and together they form a whole which complement and enrich each other.
In mathematics there are often important dualities between certain concepts

and operators. For example, in projective geometry we ® nd an interesting duality

between the following concepts:

vertices (points) ± sides (lines)

inscribed in a conic ± circumscribed around a conic
collinear ± concurrent

Two theorems or con® gurations are called dual if the one may be obtained from

the other by replacing each concept and operator by its dual concept or operator.

Some other mathematical topics where duality occurs are Boolean algebra,

tessellations, polyhedra, trigonometry, etc. If a general duality exists, then all
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the theorems of that particular topic occur in pairs, each similar to the other and

identical in structure, except for the interchange of dual concepts. In such a case

therefore the dual of any true theorem is another true theorem. In fact, it is

unnecessary to prove the dual results since their proofs can be obtained by simply
writing down the proofs of the original results word by word, replacing only

relevant concepts with their corresponding duals. The establishment of a general

duality is therefore, apart from its aesthetic appeal, also very economical from a

logical point of view.

In this note an interesting duality between addition and multiplication of terms
to produce sequences or series is discussed, and examples presented that could

provide a valuable source for investigative or enrichment work for students at the

high school or undergraduate level. At the most basic level this duality is apparent

from the fact that both operations are commutative, as well as associative. In other

words, for any mathematical expression based only on these properties, the two

operations are interchangeable; i.e. dual.

2. Duality between arithmetic series and geometric product
A useful duality between arithmetic and geometric sequences has been pointed

out in [1] which is apparently not very well known. Consider for example:

an arithmetic sequence: a; a ‡ d; a ‡ 2d; : : : ; a ‡ …n ¡ 1†d …1†

a geometric sequence: a; ar; ar2; : : : :; arn¡1 …2†

By comparing these two examples it should be clear that they are essentially
constructed in the same way. For the arithmetic sequence, a constant number is

added to the ® rst term to produce the second term, then to the second to produce

the third term, etc. For the geometric sequence, however, a constant number is

multiplied with the ® rst term to produce the second term, then with the second to

produce the third term, etc. So clearly the one sequence can be obtained from the
other by simply interchanging the addition of a constant number with the multi-
plication by a constant number, and are therefore dual. A further comparison of the

nth term of each sequence also shows that this interchange results in a correspond-

ing interchange between a linear function and an exponential function of n. For

example, in the case of the arithmetic sequence the constant number d is multiplied
by a factor …n ¡ 1† whereas in the geometric sequence the constant number r is

raised to the power …n ¡ 1†.
This duality extends to arithmetic series and geometric products as follows:

an arithmetic series: S ˆ a ‡ …a ‡ d† ‡ …a ‡ 2d† ‡ . . . ‡ …a ‡ …n ¡ 1†d† …3†

a geometric product: P ˆ a £ …ar† £ …ar2† £ . . . £ …arn¡1† …4†

To derive a formula for an arithmetic series, we usually write two versions below

each other as follows:

S ˆ a ‡ …a ‡ d† ‡ …a ‡ 2d† ‡ . . . ‡ …a ‡ …n ¡ 1†d

S ˆ …a ‡ …n ¡ 1†d† ‡ . . . ‡ …a ‡ 2d† ‡ …a ‡ d† ‡ a

Then by adding these together, simplifying, and calling the nth term q, one easily

arrives at the following formula for an arithmetic series: S ˆ n=2…a ‡ q†.
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Similarly, one can derive a formula for a geometric product by writing two

versions below each other:

P ˆ a £ …ar† £ …ar2† £ . . . £ …arn¡1†

P ˆ …arn¡1† £ . . . £ …ar2† £ …ar† £ a

Then by multiplying these together, simplifying, and calling the nth term q, one

easily arrives at the following formula for a geometric product: P ˆ …aq†n=2.
Here the duality between the two formulae is again clearly apparent. In the case

of the arithmetic series the sum of the ® rst and last term is multiplied by a factor n=2

whereas in the geometric product the product of the ® rst and last term is raised to
the power n=2.

3. A Fibonacci generalization
The well-known Fibonacci series, namely:

1 ‡ 1 ‡ 2 ‡ 3 ‡ 5 ‡ 8 ‡ 13 ‡ 21 ‡ 34 ‡ 55 ‡ . . .

can easily be constructed by the rule Tn ‡ Tn‡1 ˆ Tn‡2, where the nth term is

called Tn. Of course, one does not have to start with T1 ˆ 1 and T2 ˆ 1, but any

arbitrarily chosen T1 and T2 would do. If we call the sum to n terms Sn, then the

Fibonacci series has the following interesting property: T2 ‡ Sn ˆ Tn‡2.
Conversely, if we construct a series according to the rule C ‡ Sn ˆ Tn‡2, then it

will have the property Tn ‡ Tn‡1 ˆ Tn‡2 for all n > 1. For example, arbitrarily

choose T1 ˆ 1, T2 ˆ 2 and C ˆ 3, then according to the rule C ‡ Sn ˆ Tn‡2:

C ‡ S1 ˆ 3 ‡ 1 ˆ 4 ˆ T3

C ‡ S2 ˆ 3 ‡ 3 ˆ 6 ˆ T4

C ‡ S3 ˆ 3 ‡ 7 ˆ 10 ˆ T5; etc:

This gives the series: 1 ‡ 2 ‡ 4 ‡ 6 ‡ 10 ‡ 16 ‡ 26 ‡ 42 ‡ . . . which clearly has the
property Tn ‡ Tn‡1 ˆ Tn‡2 for all n > 1. If, however, C is chosen equal to T2 then

it is also true for n ˆ 1.

The Fibonacci series can further be considered as a special case of a whole

family of series which can be constructed by simple variations in the above

construction rules. For example one could let one’ s students investigate the
following sets of rules:

Term addition rule Sum addition rule
Tn ‡ Tn ˆ Tn‡1 C ‡ Sn ˆ Tn‡1

Tn ‡ Tn‡1 ˆ Tn‡2 C ‡ Sn ˆ Tn‡2

Tn ‡ Tn‡2 ˆ Tn‡3 C ‡ Sn ˆ Tn‡3

Tn ‡ Tn‡3 ˆ Tn‡4 C ‡ Sn ˆ Tn‡4

Before reading any further the reader is encouraged to ® rst construct a few

examples according to the above rules. A heuristic description of the Lakatosian

way in which a similar investigation by a high school teacher and his class led to the

following two generalizations in relation to this family of series is given in [2].
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Theorem 1. If Tn is the nth term and Sn is the sum to n terms of these terms,

then for all n > 1:

C ‡ Sn ˆ Tn‡k‡1 ) Tn ‡ Tn‡k ˆ Tn‡k‡1

where C is any real number and k 5 0.

Proof. The proof is based on the assumptions (a) and (b) below (which follow

automatically from the notation):

(a) Sn ˆ Sn¡1 ‡ Tn n > 1
(b) Tn‡k‡1 ˆ C ‡ Sn , Tn‡k ˆ C ‡ Sn¡1 (n is replaced by n ¡ 1)

Tn‡k‡1 ˆ C ‡ Sn

) Tn‡k‡1 ˆ C ‡ Sn¡1 ‡ Tn from (a)
) Tn‡k‡1 ˆ Tn‡k ‡ Tn from (b)

Note that S0 becomes implicitly de® ned as S0 ˆ Tk‡1 ¡ C (from assumption (b))
in the construction of such series. However, from assumption (a) we have that

S0 ˆ S1 ¡ T1 ˆ 0. Assumption (a) will therefore be true for n ˆ 1 only if we

choose Tk‡1 in such a way that S0 becomes 0 in S0 ˆ Tk‡1 ¡ C; therefore Tk‡1

must be chosen equal to C. In other words, if we choose Tk‡1 ˆ C, assumption (a)

would be valid for n ˆ 1 and therefore the conclusion Tn‡k‡1 ˆ Tn‡k ‡ Tn would
then be true for all n.

Theorem 2. If Tn is the nth term and Sn is the sum to n terms of these terms,

then for all n:

Tn ‡ Tn‡k ˆ Tn‡k‡1 ) Tk‡1 ‡ Sn ˆ Tn‡k‡1 where k 5 0

Proof. First, write the consecutive terms of the series as the following

diå erences:

T1 ˆ Tk‡2 ¡ Tk‡1

T2 ˆ Tk‡3 ¡ Tk‡2

T3 ˆ Tk‡4 ¡ Tk‡3

..

.

Tn¡1 ˆ Tk‡n ¡ Tk‡n¡1

Tn ˆ Tk‡n‡1 ¡ Tk‡n

Then adding up the left and right columns respectively, we ® nd the desired result

Sn ˆ Tk‡n‡1 ¡ Tk‡1 or Sn ‡ Tk‡1 ˆ Tn‡k‡1.

4. A dual Fibonacci generalization
Using the duality between arithmetic series and geometric products mentioned

earlier, one can now immediately formulate the following two dual theorems to

Theorems 1 and 2. (Although it is not necessary to give the proofs, they will be

given below simply to illustrate the duality.)

Theorem 3. If Tn is the nth term and Pn is the product to n terms of these terms,

then for all n > 1:
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C £ Pn ˆ Tn‡k‡1 ) Tn £ Tn‡k ˆ Tn‡k‡1 …where k 5 0†

Proof. The proof is based on the assumptions (a) and (b) below (which follow

automatically from the notation):

(a) Pn ˆ Pn¡1 £ Tn n > 1

(b) Tn‡k‡1 ˆ C £ Pn , Tn‡k ˆ C £ Pn¡1 (n is replaced by n ¡ 1)

Tn‡k‡1 ˆ C £ Pn

) Tn‡k‡1 ˆ C £ Pn¡1 ‡ Tn from (a)
) Tn‡k‡1 ˆ Tn‡k £ Tn from (b)

Note that P0 becomes implicitly de® ned as P0 ˆ Tk‡1 ¥ C (from assumption (b))

in the construction of such series. However, from assumption (a) we have that

P0 ˆ P1 ¥ T1 ˆ 1. Assumption (a) will therefore be true for n ˆ 1 only if we

choose Tk‡1 in such a way that P0 becomes 1 in P0 ˆ Tk‡1 ¥ C; therefore Tk‡1

must be chosen equal to C. In other words, if we choose Tk‡1 ˆ C, assumption (a)
would be valid for n ˆ 1 and therefore the conclusion Tn‡k‡1 ˆ Tn‡k £ Tn would

then be true for all n.

Theorem 4. If Tn is the nth term and Pn is the product to n terms of these terms,

then for all n:

Tn £ Tn‡k ˆ Tn‡k‡1 ) Tk‡1 £ Pn ˆ Tn‡k‡1 …where k 5 0†

Proof. First write the consecutive terms of the product as the following

quotients:

T1 ˆ Tk‡2

Tk‡1

T2 ˆ Tk‡3

Tk‡2

T3 ˆ Tk‡4

Tk‡3

..

.

Tn¡1 ˆ Tk‡n

Tk‡n¡1

Tn ˆ Tk‡n‡1

Tk‡n

Then multiplying up the left and right columns respectively, we ® nd the desired

result Pn ˆ Tk‡n‡1 ¥ Tk‡1 or Pn £ Tk‡1 ˆ Tn‡k‡1.

Examples. Let us consider an example of Theorem 3 for k ˆ 1 (which is the

dual to the Fibonacci series itself ). Arbitrarily choose T1 ˆ 2, T2 ˆ 3 and C ˆ 2.
Then T3 ˆ C £ P1 ˆ 2 £ 2 ˆ 4, T4 ˆ C £ P2 ˆ 2 £ 6 ˆ 12, etc., giving us the

series: 2 £ 3 £ 4 £ 12 £ 48 £ 576 £ 27 648 £ 15 925 248. . . . Here we clearly have

as before T1 £ T2 6ˆ T3, but T2 £ T3 ˆ T4, T3 £ T4 ˆ T5, T4 £ T5 ˆ T6, etc.

Let us also consider an example of Theorem 4 for k ˆ 1 (which is also the dual

to the Fibonacci series itself). Arbitrarily choose T1 ˆ 2, T2 ˆ 3. Then
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T3 ˆ T1 £ T2 ˆ 6, T4 ˆ T2 £ T3 ˆ 18, etc., giving us the series:

2 £ 3 £ 6 £ 18 £ 108 £ 1944 £ 209 952 £ 408146 688 £ . . . . Here we clearly have

as before P1 £ T2 ˆ T3, P2 £ T2 ˆ T4, P3 £ T2 ˆ T5, etc.

5. The golden and other ratios
In a golden rectangle, the rectangle obtained by removing a square from one

end is similar to the original rectangle (see ® gure 1). The ratio of the length to the

width of such a rectangle is called the golden ratio and is often denoted by the

symbol ¿. This ratio ¿ ˆ a=b is de® ned by:

a

b
ˆ b

a ¡ b

Cross-multiplying and then dividing by b2 gives:

a

b

2
¡ a

b
¡ 1 ˆ 0

So the golden ratio is the positive root of the quadratic equation:

x2 ¡ x ¡ 1 ˆ 0

and has a value of 1.618 03 (correct to 5 decimal places).

A truly surprising result is the relationship of the Fibonacci sequence with the

golden ratio. For example, the limit of the quotients of adjacent terms of the

Fibonacci sequence is the golden ratio, i.e.:

lim
n!1

Tn‡1

Tn

ˆ ¿

Since convergence is fast, it is a good activity to let students compute these ratios

using a calculator or a computer and watch them approach ¿. What about the

ratios of adjacent terms for the family of series we have discussed earlier? Do they

also approach a limit? Are there corresponding limits for the dual Fibonacci
products?

Let us consider a case where k ˆ 2 with the property Tn ‡ Tn‡2 ˆ Tn‡3:

1 ‡ 1 ‡ 1 ‡ 2 ‡ 3 ‡ 4 ‡ 6 ‡ 9 ‡ 13 ‡ 19 ‡ 28 ‡ 41 ‡ 60 ‡ 88

‡ 129 ‡ 189 ‡ 277 ‡ . . .

Here we have the following ratios (correct to four decimal places):
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T11

T10

ˆ 28

19
ˆ 1:4736;

T12

T11

ˆ 1:4642;
T13

T12

ˆ 1:4634;
T14

T13

ˆ 1:4666; etc:

From the repetition of the ® rst two decimals, we clearly already have convergence
correct to two decimal places. It is left to the reader to explore this and other cases

further.

In the preceding case we were looking for a number d so that Tn £ d ˆ Tn‡1. In

the dual case, we therefore need to look for a number so that …Tn†d ˆ Tn‡1. In

other words, for the dual case we need to consider the ratios: log Tn‡1=log Tn. Let
us now consider the example of a dual Fibonacci product discussed in the previous

paragraph, namely: 2 £ 3 £ 6 £ 18 £ 108 £ 1944 £ 209952 £ 408 146 688 £ . . .

Here we have the following ratios (correct to four decimals):

log T5

log T4

ˆ 1:6199
log T6

log T5

ˆ 1:6173
log T7

log T6

ˆ 1:6183
log T8

log T7

ˆ 1:6179 etc:

From the repetition of the ® rst two decimals, we clearly already have convergence

to the golden ratio correct to two decimal places. It is a good exercise to let one’ s

students explore this and other cases further, and to allow them to discover the
rather surprising generalization below. Technology like graphics calculators with

table facilities, or a spreadsheet on computer, could be very useful in this respect.

In what follows a partial proof of these observations will be given that should be

accessible to high school students.

Theorem 5. If Tn is the nth term of a sequence with the property

Tn ‡ Tn‡k ˆ Tn‡k‡1, then for k 5 0:

lim
n!1

Tn‡k‡1

Tn‡k

ˆ ¬

where ¬ is the positive root of xk‡1 ¡ xk ¡ 1 ˆ 0,

Proof. If we assume that

lim
n!1

Tn‡k‡1

Tn‡k

ˆ ¬

exists, then we have the following:

Tn‡k‡1 ˆ Tn‡k ‡ Tn

Tn‡k‡1

Tn‡k

ˆ 1 ‡ Tn

Tn‡k

Tn‡k‡1

Tn‡k

ˆ 1 ‡ Tn

Tn‡1

¢ Tn‡1

Tn‡2

¢ . . . ¢ Tn‡k¡1

Tn‡k

lim
n!1

Tn‡k‡1

Tn‡k
… † ˆ 1 ‡ lim

n!1

Tn

Tn‡1

¢ Tn‡1

Tn‡2

¢ . . . ¢ Tn‡k¡1

Tn‡k
… †

¬ ˆ 1 ‡ 1

¬k

¬k‡1 ¡ ¬k ¡ 1 ˆ 0

From the above it is therefore clear that if
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lim
n!1

Tn‡k‡1

Tn‡k

ˆ ¬

exists, ¬ is a root of the polynomial xk‡1 ¡ xk ¡ 1 ˆ 0. To prove the existence of

this limit in general is, however, a matter that goes beyond the scope of this article.

For k is odd, the equation x ˆ 1 ‡ …1=xk† has two real solutions, and is it possible

to generalize the approach used by [3]. However, for k even (where there is only

one real solution), and the more general case which includes the consideration of
complex roots, it appears that one would have to utilize an approach similar to that

of [4].

Furthermore, students who explored it empirically may have noticed that these

ratios ¬k start at 2 for k ˆ 0, and then appear to decrease towards a limiting value

of 1 as k increases. This observation can also easily be explained as follows. For
k ˆ 0, the series has the rule Tn ‡ Tn ˆ Tn‡1, obviously giving us the constant

ratio Tn‡1=Tn ˆ 2, which of course corresponds to the solution of the equation

x ˆ 1 ‡ …1=xk† for this value of k. By letting k increase in the latter equation, it now

follows that 1=xk decreases and therefore the root ¬ must correspondingly

decrease. Finally, taking the limit as k ! 1 of the same equation, we obtain ¬ ˆ 1.

It is also interesting to ask: what geometric interpretation can be given to these
ratios ¬k (which incidentally, is fondly referred to as the precious metal ratios)?
Clearly if we start with a rectangle with sides a and b where a 5 b, then

a

b

k‡1
¡ a

b

k
¡1 ˆ 0:

Multiplying through by bk‡1 and rearranging we obtain:

a

b

k
ˆ b

a ¡ b

Geometrically, this therefore means that after the square with sides b is removed,

the rectangle obtained must be similar to a rectangle with sides ak and bk.

Examples of corresponding rectangles for k ˆ 0, k ˆ 1 and k ˆ 2 are respectively

shown in ® gures 2a, 2b and 2c. It is also obvious that as k increases b approaches a
and the rectangle tends towards a square.

Let us now consider the dual of Theorem 5 and its proof.

Theorem 6. If Tn is the nth term of a sequence with the property:

Tn £ Tn‡k ˆ Tn‡k‡1, then for k 5 0:

lim
n!1

log Tn‡k‡1

log Tn‡k

ˆ ¬
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where ¬ is the positive root of xk‡1 ¡ xk ¡ 1 ˆ 0.

Proof. Consider the property Tn £ Tn‡k ˆ Tn‡k‡1. By taking logarithms on

both sides, it can be transformed into log Tn ‡ log Tn‡k ˆ log Tn‡k‡1. This equa-
tion is in form equivalent to the recursive formula Tn ‡ Tn‡k ˆ Tn‡k‡1 discussed

in the previous paragraph, and it can therefore be shown in the same way that if the

limit

lim
n!1

log Tn‡k‡1

log Tn‡k

ˆ ¬

exists, it is a solution of the given polynomial.

6. Another generalization and its dual
Another interesting generalization of the Fibonacci sequence [5] uses the

general rule Tn ‡ B £ Tn‡1 ˆ Tn‡2 where B is a positive integer, and shows that

the ratios Tn‡1=Tn approach the positive root of x2 ¡ Bx ¡ 1 ˆ 0 as n becomes

large.

In the same way we can construct a dual with the rule Tn £ …Tn‡1†B ˆ Tn‡2

(where B is a positive integer), and easily show that the ratios log Tn‡1= log Tn

approach the positive root of x2 ¡ Bx ¡ 1 ˆ 0 as n becomes large.

Recently, in [6], a high school student, gave the following result that for series

generated by the following rule: Tn ‡ Tn‡1 ‡ Tn‡2 ˆ Tn‡3 we have:

…T3 ¡ T1† ‡ 2Sn ˆ Tn‡3 ¡ Tn‡1

It is left to the reader to verify that the corresponding dual holds for products

created by the rule: Tn £ Tn¡1 £ Tn‡2 ˆ Tn‡3, namely:

T3

T1
… †£ P2

n
ˆ Tn‡3

Tn‡1

Not to disappoint those who know that the author can seldom resist ending a

lecture (or an article) without posing a ® nal question or two for further investiga-

tion, another challenging investigation is for the reader to explore the aforemen-
tioned theorems in relation to sequences and series with the general property

A £ Tn ‡ B £ Tn‡1 ˆ Tn‡k…k > 1†, and their duals. This is of course not to

mention exploring the further generalization of the wealth of other properties of

the standard Fibonacci series!

Mathematics is the only in® nite human activity. It is conceivable that humanity
could eventually learn everything in physics or biology. But humanity certainly
won’ t ever be able to ® nd out everything in mathematics, because the subject is
in® nite. Paul ErdoÈ s

It is not knowledge, but the act of learning, not possession but the act of getting
there, which grants the greatest enjoyment. When I have clari® ed and exhausted
a subject, then I turn away from it, in order to go into darkness again; the never-
satis® ed man is so strangeÐ if he has completed a structure, then it is not in order
to dwell in it peacefully, but in order to begin another. I imagine the world
conqueror must feel thus, who, after one kingdom is conquered, stretches out his
arms for another. Karl Gauss
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The duality theorem of linear programming is shown to be geometrically
and algebraically intuitive when the vertex at which the optimal occurs is
simple, i.e. the number of independent hyperplanes intersecting there is exactly
the dimension of the space. The result is then extended to the general case using
the order properties of the reals. Only the proof may be new.

1. Notation and de® nitions
All vectors and matrices have real entries. A is an m £ n matrix of rank r…A†,

and its ith row is denoted by Ai. Let c ˆ ‰c1 ; . . . ;cnŠ be a ® xed 1 £ n row and b a

® xed m £ 1 column with entries b1 ; . . . ;bm. The variable vectors x and u are n £ 1

and 1 £ m arrays respectively.

2. The duality theorem
One version of the duality theorem of linear programming considers the

following formulation of a problem and its dual.

The primal problem is to

maximize cx

subject to Ax 4 b

The dual problem is to

minimize ub

subject to uA ˆ c

and u 5 0

Classroom notes 473

D
ow

nl
oa

de
d 

by
 [

U
N

IV
E

R
SI

T
Y

 O
F 

K
W

A
Z

U
L

U
-N

A
T

A
L

] 
at

 2
2:

49
 2

2 
Fe

br
ua

ry
 2

01
5 


