A simple proof of an interesting Fibonacci generalization

SERGIO FALCON
Department of Mathematics, University of Las Palmas de G.C. email: sfalcon@dma.ulpgc.es

(Received 11 November 2002)

Abstract

It is reasonably well known that the ratios of consecutive terms of a Fibonacci series converge to the golden ratio. This note presents a simple, complete proof of an interesting generalization of this result to a whole family of 'precious metal ratios'.

1. Introduction

A beautiful property of the Fibonacci series is that the ratios of consecutive terms converge to the golden ratio. By generalizing the recursive formula $T_{n}+$ $T_{n+1}=T_{n+2}$ for a Fibonacci series to the general formula $T_{n}+T_{n+k}=T_{n+k+1}$, where $k=1,2, \ldots$, De Villiers [1] made the interesting discovery that for each member of this family of series, the ratios of consecutive terms converge to the positive roots of $x^{k+1}-x^{k}-1=0$. However, based on the assumption that $\lim _{n \rightarrow \infty}\left(T_{n+k+1} / T_{n+k}\right)$ exists, only a partial proof to this result was given.

De Villiers [2] suggested a simple proof for the case where k is odd, with the suggestion that it could be generalized to also cover the case where k is even. What follows is a generalization of this approach, and provides a complete proof of the result.

2. Some preliminaries

From the equation $x^{k+1}=x^{k}+1$ (1) we can deduce that

$$
x^{k}(x-1)=1 \rightarrow x^{k}=\frac{1}{x-1}
$$

and therefore, to solve equation (1) is to solve the system

$$
\left\{\begin{array}{l}
f(x)=\frac{1}{x-1} \tag{2}\\
g(x)=x^{k}
\end{array}\right\}
$$

that is to say, to find the intersection of the curves defined in (2) for $k=1,2, \ldots$
If k is even, the graph of $g(x)=x^{k}$ is a curve of parabolic type, and the intersection of the two curves is given in figure 1.
Then, system (2) has only one real solution $x=M>1$, which approaches 1 as the value of k increases.

If k is odd, the graph of $g(x)=x^{k}$ is a curve of cubic type, and the intersection of the two curves is given in figure 2 .
Note that system (2) admits only two real roots M and λ such that $M>1$ and $-1<\lambda<0$. These solutions tend to 1 and -1 respectively when k increases.

Figure 1.

Figure 2.

The other roots are simple complex numbers and the modulus lie between $|\lambda|$ and M if k is an odd number and between $M / 2$ and M if k is even.

In short: the roots of equation (1) are one positive real number M and k complex solutions λ_{j} of the form $\lambda_{j}=a_{j}+i b_{j}$ in such form that if k is odd, one of these roots lacks an imaginary part and its real part is negative. These k complex roots can be expressed in exponential form as $\lambda_{j}=r_{j} e^{i \varphi_{j}}$, where

$$
r_{j}=\sqrt{a_{j}^{2}+b_{j}^{2}} \quad \text { and } \quad \operatorname{tg} \varphi_{j}=\frac{b_{j}}{a_{j}}
$$

and such that $M>r_{j}$ for $j=1,2, \ldots k$.
Theorem. If T_{n} is the nth term of a sequence with the property $T_{n}+T_{n+k}=$ T_{n+k+1}, then for $k \geq 0$

$$
\lim _{n \rightarrow \infty} \frac{T_{n+k+1}}{T_{n+k}}=M
$$

where M is the positive root of $x^{k+1}-x^{k}-1=0$.

Proof. The preceding sequence is equivalent to $T_{n}=T_{n-1}+T_{n-k-1}$ (it is enough to substitute $n+k+1$ by n) and this one is a difference equation which characteristic equation is $x^{n}=x^{n-1}+x^{n-k-1}$ or, that is the same, $x^{k+1}=x^{k}+1$. Taking into account the discussion in the preceding section, we will have that the solution of the difference equation is (see [3])

$$
\begin{equation*}
T_{n}=a_{1} M^{n}+\sum_{j=2}^{k+1} a_{j} \lambda_{j}^{n} \tag{3}
\end{equation*}
$$

On the other hand,

$$
\lim _{n \rightarrow \infty} \frac{T_{n+k+1}}{T_{n+k}}=\lim _{n \rightarrow \infty} \frac{T_{n}}{T_{n-1}}
$$

so, taking into account formula (3) it is

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{T_{n}}{T_{n-1}} & =\lim _{n \rightarrow \infty} \frac{a_{1} M^{n}+\sum_{j=2}^{k+1} a_{j} \lambda_{j}^{n}}{a_{1} M^{n-1}+\sum_{j=2}^{k+1} a_{j} \lambda_{j}^{n-1}}=\lim _{n \rightarrow \infty} \frac{a_{1}+\sum_{2}^{k+1} a_{j}\left(\lambda_{j} / M\right)^{n}}{a_{1}(1 / M)+\sum_{2}^{k+1} a_{j}\left(\lambda_{j} / M\right)^{n-1}(1 / M)} \\
& =\lim _{n \rightarrow \infty} \frac{a_{1}+\sum_{2}^{k+1} a_{j}\left(r_{j} / M\right)^{n} e^{i n \theta_{j}}}{\left(a_{1} / M\right)+\sum_{2}^{k+1} a_{j}\left(r_{j} / M\right)^{n-1}\left(e^{i(n-1) \theta_{j}} / r_{j}\right)}=\frac{a_{1}}{a_{1} / M}=M
\end{aligned}
$$

because, since $M>r_{j}$,

$$
\lim _{n \rightarrow \infty}\left(\frac{r_{j}}{M}\right)^{n}=0
$$

References

[1] de Villiers, M., 2000, Int. F. Math. Educ. Sci. Technol., 31, 464.
[2] de Villiers, M., 2002, Private communication.
[3] Elaydi, S. N., 1999, An Introduction to Difference Equations, 2nd edn (New York: Springer-Verlag).

The inscribed sphere of an n-simplex

Y. A. FIAGBEDZI* and M. EL-GEBEILY
Department of Mathematical Sciences, King Fahd University of Petroleum
and Minerals, Dhahran, 31261, Saudi Arabia
E-mail: yawvi@kfupm.edu.sa

(Received 10 February 2003)

The centre and radius of the inscribed n-dimensional sphere of an n-simplex are derived using elementary linear algebra.

[^0]
[^0]: * The author to whom the correspondence to be addressed.

