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Abstract
This paper follows on a previous paper about a particular hexagon and
proves additional properties. For example, proving that the hexagon
in question is tangential, i.e. has an incircle, formulating & proving a
converse, as well as exploring the conditions under which the hexagon
becomes cyclic. Generalizations to particular 2n-gons are included.

Introduction

In a recent paper by De Villiers & Hung (2022) some concurrency, collinearity & other properties
of a hexagon ABCDEF with AB = BC, CD = DE, EF = FA, and <) A =<) C =<) E =
◊ were explored. However, shortly after publication the following additional properties were
discovered upon ‘looking back’ at the results in the style of Pólya (1945). These additional
properties should also be of interest not only to talented mathematics olympiad students, but
since the proofs are quite elementary, possibly also suitable as enrichment for average high school
geometry classes.

Incircle

Since the main diagonals of the hexagon above are concurrent, as proven in De Villiers & Hung
(2022), it was obvious from the converse of Brianchon’s theorem that this particular hexagon
had an inscribed conic. Somewhat surprisingly though, it turns out on further investigation that
the inscribed conic is a circle! This gives us the first additional theorem below. An interactive
dynamic geometry sketch for this result, and those further on, is available for the reader to explore
at: http://dynamicmathematicslearning.com/further-hexagon-propert
ies.html
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Figure 13: Incircle of hexagon

Theorem 1

Given a hexagon ABCDEF with AB = BC, CD = DE, EF = FA, and <) A =<) C =<) E,
then ABCDEF has an incircle.

Proof. Note that the angle bisectors of the angles at B, D and F are concurrent at the circumcentre,
Q, of —ACE. Hence, to prove the existence of an incircle, it suffices to show that the angle
bisectors of the angles at A, C and E are also concurrent at Q. Connect A, C and E with Q. Now
note that ABCQ, AFEQ and CDEQ are kites. Therefore, <) BAQ =<) BCQ, <) FAQ =<) FEQ
and <) DCQ =<) DEQ. But it is given <) BCQ+ <) DCQ =<) FEQ+ <) DEQ. Therefore,
<) BCQ =<) FEQ, which implies that <) BAQ =<) FAQ, and there AQ bisects the angle at A.
In the same way, we can show that the other two angles at C and E are respectively bisected by
CQ and EQ. Since all six angle bisectors are concurrent at Q, it shows that Q is equidistant from
all six sides, and therefore completes the proof that an incircle exists.

Alternative concurrency proof

In De Villiers & Hung (2022) we proved that the main diagonals of the hexagon ABCDEF are
concurrent by using a theorem by Anghel (2016). However, since the hexagon has an incircle as
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shown in the theorem above, the concurrency of the main diagonals AD, BE, and CF follows
immediately from the application of Brianchon’s paper, and provides much easier proof.

It has also come to my attention that this hexagon concurrency result is apparently attributed to A.
Zaslavsky, and a diagram (without proof) of it is given in Akopyan (2011, problem 4.9.26, p. 53).
It also appeared earlier as a problem in the Third Sharygin Olympiad in Geometry (2007, Final
Round, Grade 9, Problem 3). Though in Russian, it’s easy to see that the given solution on p. 6
to Problem 3 of the Third Sharygin Olympiad Solutions (2007), is via Theorem 1 above (see p. 6,
Fig. 9.3).

Converse of Theorem 1

An equivalent formulation of Theorem 1 is the following: Given a hexagon ABCDEF with
AB = BC, CD = DE, EF = FA, and <) A =<) C =<) E, then the angle bisectors of
<) A, <) C, and <) E are concurrent at the circumcentre, Q, of —ACE. This formulation now
gives us the following neat converse: Given a hexagon ABCDEF with AB = BC, CD =
DE, EF = FA, and the angle bisectors of <) A, <) C, and <) E are concurrent at the circumcentre,
Q, of —ACE, then <) A =<) C =<) E.

Proof. Again consider Figure 1. It is given that AQ and CQ respectively bisect the angles at A
and C; thus <) BAF = 2 <) BAQ and <) DCB = 2 <) BCQ. But as before ABCQ is a kite.
Therefore, <) BAQ =<) BCQ; thus <) BAF =<) DCB. Therefore, the two angles at A and C
are equal. In the same way, we can show that the angle at E is equal to either one of the angles at
A or C, to complete the proof that <) A =<) C =<) E.

It’s also interesting to explore when ABCDEF is cyclic. A little exploring with the aid of a
dynamic geometry sketch, quickly gave the following additional theorem.

Theorem 2.

Given a hexagon ABCDEFwithAB = BC, CD = DE, EF = FA, and <) A =<) C =<) E,
then ABCDEF is cyclic only when —ACE is equilateral, and the hexagon is regular. Proof. For
ABCDEF to be cyclic the points B, D and F have to lie on the circumcircle of —ACE. Assume
that B lies on the circumcircle of —ACE as shown in Figure 2. Label <) BAC = x, <) CAQ =
p, <) EAQ = r and angleFAE = z. Then determine the other angles in the diagram through
some straightforward angle chasing.

From Theorem 1, we have the following equation:

x + p = z + r (1)

Since ABCE is a cyclic quadrilateral (by assumption/construction), <) ABC is supplementary to
<) AEC. Hence,

90¶ ≠ p = 2x æ 2x + p = 90¶ (2)

Similarly, for ACEF to be cyclic, <) ACE must be supplementary to <) AFE. Hence,

90¶ ≠ r + 180¶ ≠ 2z = 180¶ æ 2z + r = 90¶ (3)

Equating Equations 2 and 2, gives 2x+p = 2z+r. Subtracting Equation 1 from the corresponding
sides of the preceding equation, gives x = z. Substitution of x = z back into Equation 1, also
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Figure 14: Angles in hexagon

implies that p = r. Similarly, for ACDE to be cyclic, <) CAE must be supplementary to <) CDE.
Hence, 360¶ ≠ 2p ≠ 4r ≠ 2z + p + r = 180¶ æ p + 3r + 2z = 180¶. But substituting p = r from
the above into this equation, gives

2r + z = 90¶ (4)

Equating Equations 2 and 4, gives 2x + p = 2r + z. Again subtracting Equation 1 from the
corresponding sides of the preceding equation, gives x = r. Substituting x = r and p = r into
Equation 1, gives 3r = 90¶ æ r = 30¶ = x = p = z. From the symmetry of the problem,
it’s obvious that the same relationships between the four angles at each of the vertices C and E
would also hold. Therefore, if ABCDEF is cyclic, —ACE will be equilateral, and the isosceles
triangles on its sides, congruent to each other (with apex angles of 120¶). Thus, ABCDEF will
be a regular hexagon.

Alternative Construction

Theorem 1 and its converse provide an alternative, easier way to construct a dynamic version of
ABCDEF than the one implied by the results in De Villiers & Hung (2022). From Theorem 1,
one can easily construct ABCDEF by starting with an arbitrary —ACE and its circumcentre, Q.
Connect Q with each the vertices A, C, and E. Choose an arbitrary point B on the perpendicular
bisector of AC, and reflect line AB around AQ. The point F is then located at the intersection
of the reflected line with the perpendicular bisector of AE. Repeat the same reflection with line
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FE around EQ to locate point D at the intersection of the reflected line with the perpendicular
bisector of CE. The formed hexagon ABCDEF can then be dynamically changed by dragging
any of the vertices of —ACE, or the variable point B.

Further Generalization

It is not hard to see, and prove in the same way as before, that the converse of Theorem 1
generalizes as follows to an octagon: Given an octagon ABCDEFGH with ACEG cyclic,
AB = BC, CD = DE, EF = FG, GH = HA, and the angle bisectors of <) A, <) C, <) E and
<) G concurrent at the circumcentre, Q, of ACEG, then <) A =<) C =<) E =<) G(see Figure 3).
From the argument it’s easy to see that the converse of Theorem 1 would further generalize in the
same way to a decagon, and in general, to a 2n-gon with n Ø 3. Note that to construct a dynamic
2n-gon with this property, one can use the alternative construction described above. For example,
for an octagon, one again starts with a cyclic quadrilateral ACEG, and an arbitrary point B, on
the perpendicular bisector of AC, and then reflect line AB around AQ, etc. Also note that since
this construction produces a 2n-gon with all the angle bisectors concurrent at Q, it follows that Q
is equidistant from all the sides, and therefore the 2n-gon has an incircle.

Figure 15: Octagon generalization of converse of Theorem 1

Perhaps unexpectedly, Theorem 1 does not likewise generalize to an octagon. For example,
Figure 4 provides a counter-example to the statement: Given an octagon ABCDEFGH with
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ACEG cyclic, AB = BC, CD = DE, EF = FG, GH = HA, and <) A =<) C =<) E =<) G,
then the angle bisectors of <) A, <) C, <) E and <) G are concurrent at the circumcentre, Q, of
ACEG. The figure clearly shows that <) BAQ ”=<) HAQ, and therefore AQ is not the angle
bisector of <) A.

However, Theorem 1 does generalize to a decagon as follows: Given a decagon ABCDEFGHIJ
with ACEGI cyclic, AB = BC, CD = DE, EF = FG, GH = HI, IJ = JA, and <) A =<) C =<) E =<) G =<) I ,
then the angle bisectors of <) A, <) C, <) E, <) G and <) I are concurrent at the circumcentre, Q, of
ACEG (see Figure 5).

With this arrangement of the kites and the equal angles at vertices A, C, E, G, I , the same proof
of Theorem 1 can again be used and is left to the reader to complete. Note that Theorem 1 can
therefore be generalized to a 2n-gon where n is odd and n Ø 3. In addition, since all the angle
bisectors are again concurrent at Q, these 2n-gons will all have incircles.

Figure 16: Octagon counter-example for generalization of Theorem 1

Concluding Remarks

The proof of Theorem 1 needs some modification for the cases when the circumcentre, Q, of
—ACE lies outside the triangle. However, these modifications can be avoided by stating and
consistently using directed angles through-out. Further reflection and investigation of the hexagon
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Figure 17: Decagon generalization of Theorem 1

in question not only produced some other interesting properties, but also a simpler proof of the
concurrency of the main diagonals, as well as some generalizations to 2n-gons. This demonstrates
the value of ‘looking back’ as advocated by Polyá (1945). Over-all, the problems are relatively
straight forward and quite suited for use in a problem solving course with novice learners and
students or for some basic practice for a mathematics competition at an introductory level.

Web Supplement.
http://dynamicmathematicslearning.com/further-hexagon-propertie
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