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A generalization of Apollonius' theorem 

A. J. DOUGLAS 

It follows at once from Pythagoras' theorem about a right-angled triangle 
that the sum of the squares of the lengths of the diagonals of a rectangle is 
equal to the sum of the squares of the lengths of the four sides. Apollonius 
showed that the assertion holds for a parallelogram and, more recently, 
Amir-Moez and Hamilton [1] gave a generalization to quadrilaterals by 
introducing a correction term which depends on the distance between the 
mid-points of the diagonals. In fact, they prove that if ABCD is a 
quadrilateral and M, N are the mid-points of the diagonals, then 

(AB)2 + (BC)2 + (CD)2 + (DA)2 = (AC)2 + (BD)2 + 4(MN)2. 

c 

A B 

We now carry the generalization a stage further. Let E denote 
n-dimensional Euclidean space with inner (or scalar) product (, ) and usual 
norm II II; so that if x = (x, ..., xn) and y = (y1,..., Yn), then 

(x,y) =xl y + ... + XnYn 
and 

x I = (X, X) )= (X/2 + ... + X2). 

If A, B are points in E and a, b are the corresponding vectors relative to 
some origin, then the distance AB from A to B is defined to be llb - all, so 
that 

(AB)2 = llb- all2 = (b- a, b- a) = (b, b) + (a, a) - 2(b, a) 
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We now carry the generalization a stage further. Let E denote 
n-dimensional Euclidean space with inner (or scalar) product (, ) and usual 
norm II II; so that if x = (x, ..., xn) and y = (y1,..., Yn), then 

(x,y) =xl y + ... + XnYn 
and 

x I = (X, X) )= (X/2 + ... + X2). 

If A, B are points in E and a, b are the corresponding vectors relative to 
some origin, then the distance AB from A to B is defined to be llb - all, so 
that 

(AB)2 = llb- all2 = (b- a, b- a) = (b, b) + (a, a) - 2(b, a) 

by the bilinearity of the inner product. by the bilinearity of the inner product. 
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Suppose now that A, ..., A2k are points of E and that a,, ..., a2k are the 
corresponding vectors. Let B, C denote respectively the orthocentres of the 
k-gons A2 A4 ... A 2k A A3 ... A2k- 1, i.e. B, C are the points with vectors 

1 1 
- (a2+ a4+... + a2k), k(al + a3 +... + a2k _). k k 

We denote by S the sum 

(AIA2)2 + (A2A3)2 +... + (A2k-lA2k)2 + (A2kA1)2 

-(A 1A3)2 - (A2A4)2- ...-(A2k A )2- (A2kA2 )2 

+ (A1A4)2 + (A2As5)2 + ... + (A2k A2)2 + (A2kA3)2 

+ (-)kf-A I A) + (A2 Ak+ 1)2 + ... + (A2k, Ak 2)2 + (A 2kAk_ )2} 

+ (-1)k+l{(AlAk+l)2 + (A2Ak+2)2 + ... + (AkA2k)2}. 

(Notice that the last row contains only k summands.) 

THEOREM. S - k2(BC)2. 

PROOF. Interpreting ap as a,, 2k when p > 2k, we have 

k-i 2k 

S = Y {(-1)Jl + (a +j - a,, a+j - ai)} 
j=1 i=1 

+ (--1)k+ Y (ai+k-- a1, a+k- a,) 
/=1 

2k k-I 2k k 

-= (a1, a)- 2 {1(--1)J+l (at+j, a)}- 2(-i)k+l 
1 i (ai+k, ai) 

i=l J= t=1 t=1i 

i\=l i=1 / =1 

a + a3 + ... + a2kl a2 + a4+ ... + a2 2 = k2 
k k 

= k2(BC)2. 

SPECIAL CASES. The case k = 2 is that given by Amir-Moez and Hamilton. 
For k = 3, we have 
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A5 

~As 

A, A2 

(A1A2)2 + (A2A3)2 + (A3A4)2 + (A4A)2 + (AA6)2 + (A6A1)2 

-(A1A3)2 -(A2A4)2 (A3A5 )2-(A4A6)2 -(A5 1)2- (A6A2)2 

+ (AiA4)2 + (A2A5)2 + (A3A6)2 

= 9(BC)2. 

Remarks on the Proof of the Theorem 

1. The Proof holds for any inner product space. 
2. The points A1, ..., A2k can be taken quite arbitrarily; in particular, 

they need not be distinct or coplanar, and, if they are coplanar, then 
the polygon A 1 ... A 2k need not be convex. 

Apollonius' theorem says that S = 0 for parallelograms, but it is easy to 
find hexagons with 

(a) opposite sides equal or 
(b) alternate sides equal or 
(c) opposite sides parallel 

and S : 0 in each case. 
We conclude by describing the construction of a general class of 2k-gons 

for which S = 0. Take k points in E with vectors a2, a4, ..., a2k, say, let ,A 
..., Ak be real numbers with ...+ .+ = 1 and put 

a = a2 + 2 a4 + ... + k a2k 

a3 = Al a4 + A2 a6 + + Ak a2 

a2k- 1= A1 a2k + 2 a2 + ... + Aka2k- 2 
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Adding gives 

a, + a3 + ... a2k = a2 + a4 + ... + a2k, 

Thus, the orthocentres B, C coincide and it follows from the Theorem that 
S=0. 

Reference 
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Cyclic polygons and related questions 
D. S. MACNAB 

This is the story of a problem that began in an innocent way and in the 
course of time spread out in unexpected directions involving some 
interesting side-issues. It all began with the following problem which I 
constructed for the Mathematical Challenge competition run by the Scottish 
Mathematical Council. 
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B 

C 

B 

C 

A A 

~-I~D D ~-I~D D 

Given three lines of lengths p, q, r, where p < q < r, arrange them to form 
the sides AB, BC, CD of a quadrilateral as shown, (with right angles at B 
and C), so that the quadrilateral ABCD has maximum area. [The solution is 
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