MATHEMATICAL ASSOCIATION

supporting mathematics in education

A Generalization of Apollonius' Theorem
Author(s): A. J. Douglas
Source: The Mathematical Gazette, Vol. 65, No. 431 (Mar., 1981), pp. 19-22
Published by: The Mathematical Association
Stable URL: http://www.jstor.org/stable/3617928
Accessed: 16/05/2011 02:53

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mathas.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @ jstor.org.

The Mathematical Association is collaborating with JSTOR to digitize, preserve and extend access to The Mathematical Gazette.
5. S. A. R. Robertson, Classifying triangles and quadrilaterals, Mathl. Gaz. 61, 38-48 (No. 415, March 1977).
6. V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Paris (1931).
H. B. GRIFFITHS

Faculty of Mathematical Studies, University of Southampton, Southampton SO9 5NH

A generalization of Apollonius' theorem

A. J. DOUGLAS

It follows at once from Pythagoras' theorem about a right-angled triangle that the sum of the squares of the lengths of the diagonals of a rectangle is equal to the sum of the squares of the lengths of the four sides. Apollonius showed that the assertion holds for a parallelogram and, more recently, Amir-Moez and Hamilton [1] gave a generalization to quadrilaterals by introducing a correction term which depends on the distance between the mid-points of the diagonals. In fact, they prove that if $A B C D$ is a quadrilateral and M, N are the mid-points of the diagonals, then

$$
(A B)^{2}+(B C)^{2}+(C D)^{2}+(D A)^{2}=(A C)^{2}+(B D)^{2}+4(M N)^{2}
$$

We now carry the generalization a stage further. Let E denote n-dimensional Euclidean space with inner (or scalar) product (,) and usual norm III; so that if $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, then

$$
(\boldsymbol{x}, \boldsymbol{y})=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

and

$$
\|\boldsymbol{x}\|=\mathscr{G}(\boldsymbol{x}, \boldsymbol{x})=\sqrt{ }\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)
$$

If A, B are points in E and $\boldsymbol{a}, \boldsymbol{b}$ are the corresponding vectors relative to some origin, then the distance $A B$ from A to B is defined to be $\|\boldsymbol{b}-\boldsymbol{a}\|$, so that

$$
(A B)^{2}=\|\boldsymbol{b}-\boldsymbol{a}\|^{2}=(\boldsymbol{b}-\boldsymbol{a}, \boldsymbol{b}-\boldsymbol{a})=(\boldsymbol{b}, \boldsymbol{b})+(\boldsymbol{a}, \boldsymbol{a})-2(\boldsymbol{b}, \boldsymbol{a})
$$

by the bilinearity of the inner product.

Suppose now that $A_{1}, \ldots, A_{2 k}$ are points of E and that $a_{1}, \ldots, a_{2 k}$ are the corresponding vectors. Let B, C denote respectively the orthocentres of the k-gons $A_{2} A_{4} \ldots A_{2 k}, A_{1} A_{3} \ldots A_{2 k-1}$, i.e. B, C are the points with vectors

$$
\frac{1}{k}\left(a_{2}+a_{4}+\ldots+a_{2 k}\right), \frac{1}{k}\left(a_{1}+a_{3}+\ldots+a_{2 k-1}\right)
$$

We denote by S the sum

$$
\begin{aligned}
& \left(A_{1} A_{2}\right)^{2}+\left(A_{2} A_{3}\right)^{2}+\ldots+\left(A_{2 k-1} A_{2 k}\right)^{2}+\left(A_{2 k} A_{1}\right)^{2} \\
& -\left(A_{1} A_{3}\right)^{2}-\left(A_{2} A_{4}\right)^{2}-\ldots-\left(A_{2 k-1} A_{1}\right)^{2}-\left(A_{2 k} A_{2}\right)^{2} \\
& +\left(A_{1} A_{4}\right)^{2}+\left(A_{2} A_{5}\right)^{2}+\ldots+\left(A_{2 k-1} A_{2}\right)^{2}+\left(A_{2 k} A_{3}\right)^{2} \\
& -\ldots \\
& \left.+(-1)^{k}\left\{-A_{1} A_{k}\right)^{2}+\left(A_{2} A_{k+1}\right)^{2}+\ldots+\left(A_{2 k-1} A_{k-2}\right)^{2}+\left(A_{2 k} A_{k-1}\right)^{2}\right\} \\
& +(-1)^{k+1}\left\{\left(A_{1} A_{k+1}\right)^{2}+\left(A_{2} A_{k+2}\right)^{2}+\ldots+\left(A_{k} A_{2 k}\right)^{2}\right\}
\end{aligned}
$$

(Notice that the last row contains only k summands.)

THEOREM. $S=k^{2}(B C)^{2}$.

PROOF. Interpreting a_{p} as $a_{p-2 k}$ when $p>2 k$, we have

$$
\begin{aligned}
& S=\sum_{j=1}^{k-1}\left\{(-1)^{j+1} \sum_{i=1}^{2 k}\left(\boldsymbol{a}_{i+j}-\boldsymbol{a}_{i}, \boldsymbol{a}_{i+j}-\boldsymbol{a}_{i}\right)\right\} \\
& +(-1)^{k+1} \sum_{i=1}^{k}\left(a_{i+k}-a_{i}, a_{i+k}-a_{i}\right) \\
& =\sum_{i=1}^{2 k}\left(a_{i}, a_{i}\right)-2 \sum_{j=1}^{k-1}\left\{(-1)^{j+1} \sum_{i=1}^{2 k}\left(a_{i+j}, a_{i}\right)\right\}-2(-1)^{k+1} \sum_{i=1}^{k}\left(\mathbf{a}_{i+k}, \mathbf{a}_{i}\right) \\
& =\left(\sum_{i=1}^{2 k}(-1)^{i+1} a_{i}, \sum_{i=1}^{2 k}(-1)^{i+1} a_{i}\right)=\left\|\sum_{i=1}^{2 k}(-1)^{i+1} a_{i}\right\|^{2} \\
& =k^{2}\left\|\frac{a_{1}+a_{3}+\ldots+a_{2 k-1}}{k}-\frac{a_{2}+a_{4}+\ldots+a_{2 k}}{k}\right\|^{2} \\
& =k^{2}(B C)^{2} \text {. }
\end{aligned}
$$

sPecial cases. The case $k=2$ is that given by Amir-Moez and Hamilton. For $k=3$, we have

$$
\begin{aligned}
& \left(A_{1} A_{2}\right)^{2}+\left(A_{2} A_{3}\right)^{2}+\left(A_{3} A_{4}\right)^{2}+\left(A_{4} A_{5}\right)^{2}+\left(A_{5} A_{6}\right)^{2}+\left(A_{6} A_{1}\right)^{2} \\
- & \left(A_{1} A_{3}\right)^{2}-\left(A_{2} A_{4}\right)^{2}-\left(A_{3} A_{5}\right)^{2}-\left(A_{4} A_{6}\right)^{2}-\left(A_{5} A_{1}\right)^{2}-\left(A_{6} A_{2}\right)^{2} \\
+ & \left(A_{1} A_{4}\right)^{2}+\left(A_{2} A_{5}\right)^{2}+\left(A_{3} A_{6}\right)^{2} \\
= & 9(B C)^{2} .
\end{aligned}
$$

Remarks on the Proof of the Theorem

1. The Proof holds for any inner product space.
2. The points $A_{1}, \ldots, A_{2 k}$ can be taken quite arbitrarily; in particular, they need not be distinct or coplanar, and, if they are coplanar, then the polygon $A_{1} \ldots A_{2 k}$ need not be convex.
Apollonius' theorem says that $S=0$ for parallelograms, but it is easy to find hexagons with
(a) opposite sides equal or
(b) alternate sides equal or
(c) opposite sides parallel
and $S \neq 0$ in each case.
We conclude by describing the construction of a general class of $2 k$-gons for which $S=0$. Take k points in E with vectors $a_{2}, a_{4}, \ldots, a_{2 k}$, say, let λ_{1}, \ldots, λ_{k} be real numbers with $\lambda_{1}+\ldots+\lambda_{k}=1$ and put

$$
\begin{gathered}
a_{1}=\lambda_{1} a_{2}+\lambda_{2} a_{4}+\ldots+\lambda_{k} a_{2 k} \\
a_{3}=\lambda_{1} a_{4}+\lambda_{2} a_{6}+\ldots+\lambda_{k} a_{2} \\
\vdots \\
a_{2 k-1}=\lambda_{1} a_{2 k}+\lambda_{2} a_{2}+\ldots+\lambda_{k} a_{2 k-2} .
\end{gathered}
$$

Adding gives

$$
a_{1}+a_{3}+\ldots a_{2 k-1}=a_{2}+a_{4}+\ldots+a_{2 k}
$$

Thus, the orthocentres B, C coincide and it follows from the Theorem that $S=0$.

Reference

1. Ali R. Amir-Moez and J. D. Hamilton, A generalized parallelogram law, Maths. Mag. 49, 88-89 (1976).
A. J. DOUGLAS

Dept. of Pure Mathematics, The University of Sheffield

Cyclic polygons and related questions

D. S. MACNAB

This is the story of a problem that began in an innocent way and in the course of time spread out in unexpected directions involving some interesting side-issues. It all began with the following problem which I constructed for the Mathematical Challenge competition run by the Scottish Mathematical Council.

Problem 1

Given three lines of lengths p, q, r, where $p<q<r$, arrange them to form the sides $A B, B C, C D$ of a quadrilateral as shown, (with right angles at B and C), so that the quadrilateral $A B C D$ has maximum area. [The solution is

