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A generalization of Apollonius’ theorem

A.J. DOUGLAS

It follows at once from Pythagoras’ theorem about a right-angled triangle
that the sum of the squares of the lengths of the diagonals of a rectangle is
equal to the sum of the squares of the lengths of the four sides. Apollonius
showed that the assertion holds for a parallelogram and, more recently,
Amir-Moez and Hamilton [1] gave a generalization to quadrilaterals by
introducing a correction term which depends on the distance between the
mid-points of the diagonals. In fact, they prove that if ABCD is a
quadrilateral and M, N are the mid-points of the diagonals, then

(AB)* + (BC)* + (CD)* + (DA)* = (AC)* + (BD)* + 4(MN)~.
C

A B

We now carry the generalization a stage further. Let E denote
n-dimensional Euclidean space with inner (or scalar) product ( , ) and usual
norm | Il; so that if x = (x,,..., x,) and y = (..., »,,), then

(st’) =XVt e+ X,
and
Ixll = £(x x)=/(x?+... + x2).

If A, B are points in E and a, b are the corresponding vectors relative to
some origin, then the distance AB from A to B is defined to be I1b — all, so
that

(4B =1b—al*=(b—a,b— a)= (b, b) + (a, a) — 2(b, a)
by the bilinearity of the inner product.
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Suppose now that 4, ..., A, are points of E and that a,, ..., a,, are the
corresponding vectors. Let B, C denote respectively the orthocentres of the
k-gons A, A, ... Ay, A1 Ay ... Ay _,,i.e. B, C are the points with vectors

1
E(GZ+ a, + ...+ ay), 7(—(al +a+ ...+ @y )

We denote by S the sum

(A A)Y + (A3 A2+ oo+ (Agp_ 1 A )P + (A A))?

— (A, A — (A A) — ... — (Agy_ A — (A Ay)?

+ (A A+ (A AP+ oo+ (Agp_ AP+ (A A5)?

+ (D=4, 4 )+ (A A )P+ oo+ (A Ay ) + (Ayd, )
+ (DM Y(A, A, )P+ (A )P + o+ (4,450

(Notice that the last row contains only k summands.)
THEOREM. S = k*(BC)

PROOF. Interpreting a, as a,_,, when p > 2k, we have

k-1 2k
S= Z {(_1)j+l Z (a,+j—a,, aH_j—ai)}
j=1 i=1
k

+ (=D Y (- a0, —a)
i=1

2k k—1 2k k
= Z (ala al)_ ZjZ {(_1)j+1 Z (al+j’ a()} - 2("'1)k+l Z (@, 4 ai)
i=1 =1 i=1 i=1

2

2k 2k
— ( Z (_1)i+1 al’ Z (_1)l+1 "1) —
i=1 i=1

2k .
Z (_ 1)l+l ai
i=1

2
a +a,+..+ay , G+a+..+ay

k k

= k?

= k*(BC)™

SPECIAL CASES. The case k = 2 is that given by Amir-Moez and Hamilton.
For k = 3, we have
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As

A i

(A A2+ (A, AP+ (A3 A )P+ (A AP + (A A + (AgA))?
— (4,4 — (A, 4. — (434" — (A, 4¢) — (45 4,)* — (46 4,)°
+ (A, A)* + (4,45 + (45 44)?
=9(BC)>

Remarks on the Proof of the Theorem

1. The Proof holds for any inner product space.

2. The points A4, ..., A, can be taken quite arbitrarily; in particular,
they need not be distinct or coplanar, and, if they are coplanar, then
the polygon 4, ... A,, need not be convex.

Apollonius’ theorem says that S = 0 for parallelograms, but it is easy to
find hexagons with

(a) opposite sides equal or
(b) alternate sides equal or
(c) opposite sides parallel

and S # 0 in each case.

We conclude by describing the construction of a general class of 2k-gons
for which S = 0. Take k points in E with vectors a,, a,, ..., @y, say, let 4,,
..., A be real numbers with 4, + ... + 4, = 1 and put

a=rAa,+Aa,+...+ A ay
%fhm+h%+m+h%

ay =Aay+ra+... + A ay_,
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Adding gives
A+ a+...0y =0+ 0+ ...+ Q.

Thus, the orthocentres B, C coincide and it follows from the Theorem that
S=0.
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Cyclic polygons and related questions

D. S. MACNAB

This is the story of a problem that began in an innocent way and in the
course of time spread out in unexpected directions involving some
interesting side-issues. It all began with the following problem which I
constructed for the Mathematical Challenge competition run by the Scottish
Mathematical Council.

Problem 1

Given three lines of lengths p, g, r, where p < g < r, arrange them to form
the sides AB, BC, CD of a quadrilateral as shown, (with right angles at B
and C), so that the quadrilateral ABCD has maximum area. [The solution is
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