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Utilizing a duality between the concepts incentre and circumcentre, a dual to
a well-known generalization of Napoleon's theorem is conjectured, experimen-
tally confirmed and eventually proved. The proof then also shows that the result
is merely a special case of a more general result. As a further consequence, two
interesting related results are also derived.

A useful duality is that between the concepts angle bisector and perpendicular
bisector. For instance, an angle bisector and perpendicular bisector are both loci of
points, respectively equidistant from two lines intersecting in a point (an angle) or
two points lying on a line (a line segment). Likewise an incentre and circumcentre are
each other's duals, both being points, respectively equidistant from a number of line
segments and a number of points (vertices).

Although it is not a general duality like the duality between points and lines in
projective geometry, theorems involving these concepts frequently also occur in dual
pairs. The following examples are from De Villiers [1]:

(1) The angle bisectors of any circum polygon (a polygon circumscribed around
a circle) are concurrent at the incentre of the polygon.

(2) The perpendicular bisectors of any cyclic polygon are concurrent at the
circumcentre of the polygon.

(3) If O is the incentre of any triangle ABC, then the circumcentre of triangle
BOC, say P, lies on the angle bisector of angle A, namely AO (Figure 1).

(4) If O is the circumcentre of any triangle ABC, then the incentre of triangle
BOC, say P, lies on the perpendicular bisector of BC (the side opposite angle
A), namely EO, where E is the midpoint of BC (Figure 2).

(5) Steiner Lehmus: any triangle that has two equal angle bisectors (each
measured from the vertex to the opposite side) is isosceles (see Figure 3).

(6) Any triangle that has two equal perpendicular bisectors (each measured from
the midpoint to the opposite side) is isosceles (see Figure 4).

Since the incentre and circumcentre of an equilateral triangle coincide, Napoleon's
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234 M. D. de Villiers andjf. H. Meyer

Figure 1.

theorem is selfdual with respect to these concepts, since it states that if equilateral
triangles are erected (outwardly or inwardly) on the sides of any triangle, their
circumcentres form an equilateral triangle (see Wetzel [2]).

A well-known generalization of Napoleon's theorem is the following:
I f similar triangles ADB, CBE and FA C are erected on the sides of any triangle
ABC, their circumcentres, G, H and / form a triangle similar to the three
triangles (see Coxeter and Greitzer [3]).

The preceding duality now suggests the following dual which was confirmed
experimentally on a computer, using Cabri-Geometre (see De Villiers [4]):

If similar triangles ADB, CBE and FAC are erected outwardly on the sides
of any triangle ABC, their incentres G, H and / form a triangle similar to the
three triangles.

Figure 2.
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Generalized dual of Napoleon's theorem, plus extensions 235

B
Figure 3.

Proof. This result can be proved using mainly the following special case of the
Petersen—Schoute theorem (Coxeter and Greitzer [3]):

If ABC and A'B'C are two directly similar triangles, while AA'A", BB'B",
CC'C are three directly similar triangles, then AA"B"C is directly similar to
AABC (Figure 5).

Let us now first examine what we mean by points that are in the same relative
position with respect to two directly similar triangles. (Two triangles are directly
similar if the transformation which maps the one triangle on to the other preserves
angles in both magnitude and direction.)

Assume two triangles ABC and A'B'C are directly similar (Figure 6). Let P be
any point in the plane. Then we can say that the point P' is in the same relative
position to AA'B'C as P is to AABC if the transformation (in this case a translation
or a spiral similarity) which maps AABC to AA'B'C, also maps the point P onto
P'.

Let us now consider the above generalized dual to Napoleon's theorem. In Figure
7 we have AABC and the three directly similar triangles ADB, CBE and FAC. Now

B
Figure 4.
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236 M. D. de Villiers andj. H. Meyer

c--
Figure 5.

choose any three points P, Q and R in the plane so that they are, respectively, in the
same relative positions to triangles ADB, CBE and FAC. (We could for example
choose the three incentres.) Let G, Hand /be the three circumcentres of the similar
triangles.

Then, according to the aforementioned generalization of Napoleon's theorem,
we have AGHI directly similar to the three similar triangles. We shall now use the
Petersen-Schoute theorem to show that APQR is directly similar to AGHI which
then provides the desired result.

First, we see that triangles PAG, QCH and RFI are directly similar since the
points P, A and G have relatively the same positions to AADB as the points Q, C
and H, respectively, have to ACBE. The points R, F and / similarly have the same
relative positions to AFAC as the points Q, C and H have to ACBE. In Figure 8
we therefore have the same configuration as that of Figure 5 and the result now
follows directly from the Petersen-Schoute theorem. (Note that triangle A'B'C in

B1
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Generalized dual of Napoleon's theorem, plus extensions 237

Figure 7.
Figure 5 does not have to include triangle ABC.) It should also be observed that
QpR = Bt>A, P0R = B&C and QRP = CPA.

The aforementioned generalization of Napoleon's theorem, as well as its dual,
is therefore merely a special case of the following more general result:

Theorem 1. If similar triangles ADB, CBE and FAC are erected outwardly on
the sides of any triangle ABC, and any three points P, Q and R are chosen so that
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238 M. D. de Villiers andj. H. Meyer

Figure 9.

they respectively lie in the same relative positions to these triangles, then P, Q and
R form a triangle similar to the three triangles.

An interesting corollary is that we would also obtain a similar triangle if we
instead connected the corresponding centroids or orthocentres of the similar
triangles.

Note. It is interesting to examine how the point O around which the rotation
takes place should be constructed (when the triangles GHI and ACF are not
congruent and cannot be mapped onto each other by a translation, in which case the
whole situation is trivial). Consider for example in Figure 9 the line segments GH
and AC which are mapped onto each other by means of a similar transformation.
Let GA and HC (extended) meet in 5 and let the other intersection of the circles
through ACS and GHS be O. (If the circles touch each other at S, choose O to be
the same point as S). The point O is the desired point, since
OHG = OSG = OS A = OCA and similarly OAC = OGH. This means that triangles
OGH and OAC are directly similar by means of the spiral similarity O(tc, 6) where
K = AC\GH and 0 = G6A. Since HGI = CAF and GHI = ACF, the point / would
necessarily map onto F under this transformation, in other words triangles ACF and
GHI are directly similar under the transformation O(K, 6). This result has a useful
application in our proof of Theorem 2 later on.

Another less well-known generalization of Napoleon's theorem is to alter the
arrangement of the triangles on the sides by outwardly constructing three similar
triangles ABD, EBC and AFC, instead of the similar triangles ADB, CBE and FAC.
The circumcentres G, H and I of these triangles also form a triangle similar to them,
since we still have t) + E + P= 180°, which is the same characteristic property upon
which the more familiar formulation depends [3].

Using Cabri Geometre again in checking the corresponding case for incentres for
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Generalized dual of Napoleon's theorem, plus extensions 239

B
Figure 10.

this arrangement of triangles, it was found that triangle GHI was no longer similar
to triangles ABD, EBC and AFC. However, this investigation has led to the
following discovery [4].

Theorem 2. If similar triangles ABD, EBC and AFC are erected outwardly on
the sides of any triangle ABC, their incentres G, H and / form a triangle with
6 = \{DAB + DBA), tl=\{EBC + ECB) and 1=\(FCA + FAC) (Figure 11).

Let us now first prove the following lemma:
Lemma 1. Consider a triangle ABC with angles a, b and c and incenter O as

indicated in Figure 10. If we construct a new triangle DBA with DBO = \c and
DAO = \c, then BDO = \a and ADO = \b.

Proof. Extend BO and AO to E and F on AD and BD, respectively. Then
EFBA is a cyclic quadrilateral, since FBE=FAE = \c. Therefore
EPA = EBA = ±b. But OEDF is also a cyclic quadrilateral, since
F6E + FDE = 180°. Therefore ODE = OPE = %b. Since BDA = |(a + b) it follows
that

Proof of Theorem 2. In Figure 11 we have triangle ABC with three directly
similar triangles ABD, EBC and AFC with angles a, b and c as indicated. Let G,
H and / indicate the respective incentres.

Construct triangles ABP, CQB and RCA in the same way as in Lemma 1, in other
words enlarge GAB and GBA each by \c to obtain the point P, enlarge HBC and
HCB each by \a to obtain Q and enlarge lAC and Z&4 each by \b to obtain R. These
three new triangles now stand on the sides of triangle ABC in the same way as in
Theorem 1, with the angles P, Q and R, respectively, equal to \{a + b), -|(6 + c) and

In addition, according to Lemma 1 we have that point G lies in the same relative
position to AABP, as the point H lies relatively to ACQB. The same is true for the
point / relative to ARC A. According to Theorem 1, we therefore obtain the desired
result that G = $(a + b), tl=\{b + c) and 1= i(a +c).

We can now also prove the following interesting theorem:
Theorem 3. If triangles DBA, ECB ans FAC with angles a, /? and y are erected

outwardly on the sides of any triangle ABC as shown in Figure 12, and
a + 0 + y = 90°, then EDF = 20, DpE = 2a and FED = ly.
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240 M. D. de Villiers andjf. H. Meyer

Proof. Construct three new triangles PBA, BQC and ACR by choosing
PBD = y, PAD = a, QBE = ft, QCE=<x, RCF=y and RAF=0. Then triangles
PBA, BQC and ACR are directly similar with incentres D, E and F, respectively.
Therefore ADEF is directly similar to APBA so that EDF= BpA = 2)?, etc.
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