GEOMETRIC PROOFS AND FURTHER GENERALIZATIONS OF DAO THAN OAI'S NAPOLEON HEXAGON THEOREM

HANS HUMENBERGER, BERTHOLD SCHUPPAR, MICHAEL DE VILLIERS

Abstract

Recently we published a paper concerning a generalization of Napoleon's theorem, De Villiers/Humenberger/Schuppar (2022). Then we were pointed to Dao Tanh Oai (2015) where a theorem concerning another generalization of Napoleon's theorem is presented (without a proof). In this paper we present two purely geometric proofs for Dao Tanh Oai's generalization of Napoleon's theorem and some further generalizations.

In Dao Tanh Oai (2015) the following theorem is presented and called Theorem 1, and here we call it the same.

Theorem 1. Let $A B C D E F$ be a hexagon and $\triangle A B G, \triangle D H C, \triangle I E F$ all outwardly or inwardly constructed equilateral triangles (in Fig. 1 all outwardly). Let A_{1}, B_{1}, C_{1} be the centroids of $\triangle F G C, \triangle B H E$, and $\triangle D I A$ respectively, let A_{2}, B_{2}, C_{2} be the centroids of $\triangle D G E, \triangle A H F$, and $\triangle B I C$ respectively. Then $\triangle A_{1} B_{1} C_{1}$ and $\Delta A_{2} B_{2} C_{2}$ are equilateral triangles.
Additionally (not mentioned in Dao Tanh Oai (2015)): There is a third such equilateral $\triangle A_{3} B_{3} C_{3}$ where A_{3}, B_{3}, C_{3} are the centroids of the triangles IGH, ACE, DBF.

[^0]

Figure 1

In Dao Tanh Oai (2015) a reference ${ }^{1}$ is given where it is said to be a proof for Theorem 1 using complex numbers, but we could not find such a proof there. But at this link one can find another very short and dense proof (for an even stronger result) by Bogomolny (2013) using affine transformations and linear algebra. There no hexagon appears, but rather three arbitrary directly similar triangles, and the equilateral triangles of Theorem 1 are, of course, directly similar to each other, so that one can immediately see that Theorem 1 is covered by this "final chapter of the asymmetric propeller story", as it is called there.
In the following we give two proofs for Theorem 1^{2} which use only geometric arguments. The first proof works with several steps starting from the well-known Napoleon configuration, basically all steps the same, thus a proof for one such step suffices.
The second proof works with the stronger result of the "final chapter of the asymmetric propeller story" but does not use the above mentioned (short, dense, and rather abstract) arguments. We will use another means, which could be called the "fundamental theorem of similarity" (see below). This second proof will also provide a further generalization.

[^1]Initially, let us briefly recall the well-known configuration of Napoleon's theorem. Let $\triangle A C E$ be a triangle and on its three sides equilateral triangles (all outwardly or all inwardly, in Fig. 2a all outwardly) are erected. Then the centroids A_{1}, B_{1}, C_{1} of these equilateral triangles themselves build an equilateral triangle ${ }^{3}$. It is also well known that the line segments $A H, C I$, and $E G$ are equal and concurrent at the Fermat-Torricelli point T of the initial $\triangle A C E$, and that these lines make angles of 60° and 120° at T (Fig. 2a).

Figure 2a

2b

1. First proof

For this first proof we will need four other results, some of them not so well known, thus we will formulate them as Lemmas and give proofs.

Lemma 1. In Fig. 2a the points A_{2}, B_{2}, C_{2} which are defined as the points dividing the line segments $E G, A H$, and $C I$ in the ratio $1: 2$ build an equilateral triangle.

Proof. If we rotate the line segment $E G$ around A counterclockwise with 60° (yielding the line segment $I C$) and then again with 60° counterclockwise around E we have finally $E G \mapsto A H$ and $A_{2} \mapsto B_{2}$ (see Fig. 2b). Let $E^{\prime} \in I C$ be the image of A_{2} under the first rotation with center A, then $\Delta A A_{2} E^{\prime}$ is equilateral and the distance $I E^{\prime}$ equals one third of $I C$. Since the image of E^{\prime} under the second rotation (center E) is B_{2} also $\Delta E E^{\prime} B_{2}$ is equilateral. But looking at $\Delta E E^{\prime} B_{2}$ differently one can say: if we rotate $E G$ around B_{2} with 60° counterclockwise we have $E G \mapsto E^{\prime} G^{\prime}$ (with $G^{\prime} \in I C$) and the points C_{2} and C trisect $E^{\prime} G^{\prime}$. Therefore, the image of A_{2} under the 60° counterclockwise rotation around B_{2} is C_{2}, and thus $\Delta A_{2} B_{2} C_{2}$ is equilateral.

Lemma 2. Let $\triangle A B C$ be a triangle with centroid G. If C is moved to C^{\prime} let G^{\prime} be the centroid of $\triangle A B C^{\prime}$. Then $G G^{\prime}$ is parallel to $C C^{\prime}$ and has one third of its length (Fig. 3a).

[^2]

Figure 3a

$3 b$

Proof: $G G^{\prime}$ is the image of $C C^{\prime}$ under the homothety with the midpoint of $A B$ as center and factor $k=\frac{1}{3}$.

Lemma 3. Let $\triangle A B C$ and $\triangle A B^{\prime} C^{\prime}$ be two equilateral triangles sharing the common point A. Then $B B^{\prime}$ and $C C^{\prime}$ are equal and make an angle of 60° (in Fig. 3b at D^{4}).

Proof: The triangles $\triangle A B B^{\prime}$ and $\triangle A C C^{\prime}$ are congruent (side-angle-side) and $\angle B A C=$ 60°. In other words: $\triangle A C C^{\prime}$ is $\triangle A B B^{\prime}$ rotated by 60° around A.

Lemma 4. Let $\triangle A B G, \triangle D C H, \triangle I E F$ be three equilateral triangles with initially $C=$ B (Fig. 4a; no matter whether or not E and D coincide, analogously with A and F). Moreover, let the centroids A_{1}, B_{1}, C_{1} of the triangles $\triangle F C G, \triangle B E H$, and $\triangle A D I$ build an equilateral triangle. If then the point C is moved to C^{\prime}, Fig. 4b) also the points A_{1}, H, and B_{1} move $\left(\rightarrow A_{1}^{\prime}, H^{\prime}, B_{1}^{\prime}\right)$. But still the $\Delta A_{1}^{\prime} B_{1}^{\prime} C_{1}$ is equilateral.

Figure 4a

$4 b$

[^3]Proof. Due to Lemma 2 we have $A_{1} A_{1}^{\prime} \| B C^{\prime}$ and $A_{1} A_{1}^{\prime}=\frac{1}{3} B C^{\prime}$ (Fig. 4b). Because of Lemma 3 we have $H H^{\prime}=B C^{\prime}$ with an angle of 60° between them. Using again Lemma 2 we know $B_{1} B_{1}^{\prime} \| H H^{\prime}$ and $B_{1} B_{1}^{\prime}=\frac{1}{3} H H^{\prime}$. Altogether, $A_{1} A_{1}^{\prime}=B_{1} B_{1}^{\prime}$ with an angle of 60° between them, which means that $B_{1} B_{1}^{\prime}$ is $A_{1} A_{1}^{\prime}$ rotated with 60° around C_{1}. Furthermore, we know $C_{1} B_{1}$ is $C_{1} A_{1}$ rotated with 60° around C_{1}, thus $\angle C_{1} A_{1} A_{1}^{\prime}=\angle C_{1} B_{1} B_{1}^{\prime}$ and the triangles $\Delta C_{1} A_{1} A_{1}^{\prime}$ and $\Delta C_{1} B_{1} B_{1}^{\prime}$ are congruent (side-angle-side), and from that we can conclude $C_{1} A_{1}^{\prime}=C_{1} B_{1}^{\prime}$ and $\angle A_{1}^{\prime} C_{1} B_{1}^{\prime}=60^{\circ}$, or equivalently $\Delta A_{1}^{\prime} B_{1}^{\prime} C_{1}$ is equilateral. This completes the proof of Lemma 4.

Now we are prepared to prove Theorem 1. The only thing we have to do is to apply Lemma 4 several times. On the one hand starting with the usual Napoleon configuration $(B=C, D=E, F=A)$ Lemma 4 guarantees that in case $B \neq C, D=E, F=A$ the $\Delta A_{1} B_{1} C_{1}$ is still equilateral (step 1); in the next step 2 we separate D and E, and in the third step we separate F and A. We wanted to stress the issue of "proof as explanation" (see De Villiers 2012), so we decided to give an illustrative own figure for every step (see Fig. 5a-d). Again, in both steps 2 and 3 due to Lemma 4 the $\Delta A_{1} B_{1} C_{1}$ stays equilateral.

Figure 5a

Figure 5c

5b

5d

And with the $\Delta A_{2} B_{2} C_{2}$ we do it the same way starting from the configuration of Lemma 1 which says that the corresponding dividing points in the ratio $1: 2$ (namely A_{2}, B_{2}, C_{2}) build an equilateral triangle. Note here that all three "green triangles" ($\triangle D G E, \triangle A H F$, $\triangle B I C)$ are initially degenerated to line segments, the centroid of $\triangle E G D$ is at the beginning the point dividing $E G$ in the ratio $1: 2$ (analogous with the others). Then making again three steps (in each step using Lemma 4) yields Fig. 6a-d, the $\Delta A_{2} B_{2} C_{2}$ stays equilateral in each step. This completes the proof of Theorem 1.

Figure 6a

Figure 6c

6b

6d

The proof for the $\triangle A_{3} B_{3} C_{3}$ works analogously. Since the triangles $A C E$ and $D B F$ are the same initially ($A=F, B=C, D=E$; see Fig. 2a), and since it is well known that in the original Napoleon configuration (Fig. 2a) the centroids of $\triangle I G H$ and $\triangle A C E$ coincide, we know that initially we have $A_{3}=B_{3}=C_{3}$, in other words $\Delta A_{3} B_{3} C_{3}$ is an equilateral triangle degenerated to a single point. Again, stepwise separating the points B, C, then E, D, and finally A, F - using Lemma 4 in each step - provides a proof.

2. SECOND PROOF

For a second proof we prove a generalization of Theorem 1 to similar triangles. For that we need the following

Fundamental Theorem of Similarity (FTS) ${ }^{5}$.

If F and F^{\prime} are any two directly similar ${ }^{6}$ figures with the vertices P in F corresponding to vertices P^{\prime} in F^{\prime}, and the lines $P P^{\prime}$ are divided by $P^{\prime \prime}$ in the same ratio ${ }^{7}$, then the new figure $F^{\prime \prime}$ formed by the points $P^{\prime \prime}$ is directly similar to F and F^{\prime} (in Fig. $7 F$ is a quadrilateral $I J K L)$.

Figure 7

This important and powerful theorem can be proved in various ways (see DeTemple/ Harold (1996), De Villiers (1998), Abel (2007), Fried (2021)). With this result one can prove the "final chapter of the asymmetric propeller story" in a more explanatory way, not using the concepts of affine operators and the like.

[^4]Theorem 2. ("The final chapter of the asymmetric propeller story")
Given three directly similar triangles $A B G, D H C, I E F^{8}$ then the centroids A_{1}, B_{1}, C_{1} of the three triangles ($F G C, B H E, D I A$) formed by joining corresponding vertices form a $\Delta C_{1} B_{1} A_{1}$ directly similar to the other three.

Figure 8

Proof. To come from the similar triangles $A B G, D H C, I E F$ to the resulting similar $\Delta C_{1} B_{1} A_{1}$ we need two steps of FTS: In the first step one combines, say $\triangle A B G$ and $\triangle D H C$, with factor $r=\frac{1}{2}$ (that means we focus on the midpoints of corresponding points) yielding the $\triangle X Y Z$ which due to FTS is similar to the triangles $A B G, D H C, I E F$. Assume a point mass of 1 at each of the vertices $A, B, C, D, E, F, G, H, I$. At each of the vertices X, Y, Z we can now imagine a point mass of 2 (since they are respective midpoints between two corresponding vertices). Thus, in order to get the centroid A_{1} of the $\triangle F G C$ we have to look for a point dividing $Z F$ in the ratio $1: 2^{9}$, analogously with B_{1} and C_{1}. That means altogether, in the second step one combines $\triangle X Y Z$ with $\triangle I E F$ with factor $r=\frac{1}{3}$ or $r=\frac{2}{3}$ (that depends on which of the two triangles $X Y Z$ or IEF one starts from) to get $C_{1} B_{1} A_{1}$ which, again due to FTS, is similar to the triangles $A B G, D H C, I E F$.

Remarks

- Referring to Theorem 1 all the erected equilateral triangles are, of course, directly similar to each other. Thus, Theorem 2 automatically provides a proof of Theorem 1 , for all three cases $\Delta A_{i} B_{i} C_{i}$. All three triangles can be drawn in the same sketch because in each case A_{i}, B_{i}, C_{i} are centroids of triangles built up of corresponding vertices of directly similar triangles (Fig. 1).

[^5]- It should be emphasized that in Theorem 2 and Fig. 8 the order of the vertices in the mentioned triangles is important (the given directly similar triangles and $\Delta C_{1} B_{1} A_{1}$): equal angles at the first, second and third vertex, respectively. Analogously, this is important below (alternative arrangements, Fig. 9 and 10).

When the initial three triangles are directly similar (and not equilateral any more), the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ (as defined at the beginning) are no longer similar to the initial three similar triangles, because the vertices of the triangle with centroid A_{2} are no longer corresponding vertices of directly similar triangles (analogously with B_{2} and C_{2}). This brings us to the following paragraph.

Alternative arrangements of directly similar triangles. If three directly similar triangles $A B G, H C D \& F I E$ are constructed the centroids A_{2}, B_{2}, C_{2} of the three triangles ($D G E$, $A H F, B I C$) will form a $\Delta B_{2} C_{2} A_{2}$ directly similar to the other three (here the order of vertices is important!) as shown in Fig. 9. But triangles $A_{1} B_{1} C_{1}$ and $A_{3} B_{3} C_{3}$ (in any order of the vertices) would not be similar to the initial three directly similar triangles.

Figure 9
Similarly, if three directly similar triangles $A B G, C D H \& E F I$ are given, then the centroids A_{3}, B_{3}, C_{3} of the three triangles (IGH, ACE \& DBF) form a $\Delta B_{3} C_{3} A_{3}$ directly similar to the other three (here the order of vertices is important!) as shown in Fig. 10. Likewise, triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ (in any order of the vertices) would not be similar to the initial three directly similar triangles.

Figure 10
As before, both results in the alternative arrangements above follow from the fundamental theorem of similarity.

Further generalization. With the same technique one can show an even more general result: Given four (n) directly similar quadrilaterals (n-gons) whose corresponding vertices are similarly connected to produce four (n) quadrilaterals (n-gons), and then again taking the centroids (point mass or average) of these four (n) similar quadrilaterals (n gons) will produce another quadrilateral (n-gon) similar to the other four (n). In Fig. 11 the case of quadrilaterals is shown $(A, C, E, G$ are corresponding vertices and the centroid of the quadrilateral $A C E G$ is K; analogously with $L, M, N)$.
An equivalent formulation would be: Given an octagon ($2 n$-gon) and four (n) directly similar quadrilaterals (n-gons) erected on alternate sides of the octagon ($2 n$-gon). The corresponding vertices are similarly connected to produce another four (n) quadrilaterals (n-gons), and then taking their centroids (point mass or average) will produce another quadrilateral (n-gon) similar to the other four (n).

Figure 11

The reader is now invited to further explore other possible arrangements of the directly similar quadrilaterals (n-gons) by considering different cyclic permutations of their labels to find more ways of producing other similar centroid-quadrilaterals (centroid- n gons).

Conclusion. We presented two geometric proofs of Dao Tanh Oai's generalization of Napoleon's theorem. The first one is a new proof. Moreover, we discussed a further equilateral triangle in this configuration which is not mentioned by Dao Tanh Oai. Though our second proof is not entirely new, and can be seen to be equivalent to that of Bogolmony (2013), we here instead used the Fundamental Theorem of Similarity to produce a more explanatory proof of Dao Tanh Oai's generalization of Napoleon's theorem. In addition, this second proof immediately suggested alternative arrangements of similar triangles and the further generalizations (similar quadrilaterals, or in general, similar n-gons instead of similar triangles). So the second proof also provides a nice illustrative example of the so-called "discovery function" of proof, whereby proving a result gives insight that leads to deeper understanding, other variations, and further generalization (see De Villiers (2012)). Generally, we think geometric proofs are more explanatory than proofs using vectors or complex numbers, and proof as explanation is a very important function of proofs (among others like verification, see De Villiers (2012)). Proving results in different ways always increases insight both for professional mathematicians as well as for students.

REFERENCES

[1] Abel, Z. R. Mean geometry (2007). http://zacharyabel.com/papers/Mean-Geo_A07.pdf
[2] Bogomolny, A. A Final Chapter of the Asymmetric Propeller Story (2013). http:/ /www.cut-the-knot.org/m/Geometry/FinalAsymmetricPropeller.shtml
[3] Dao Tanh Oai. Two generalizations of the Napoleon theorem (2015). https://diendantoanhoc.org/index.php?app=core\&module=attach\§ion=attach\&attach_id=22546
[4] DeTemple, D., Harold, S. A round-up of square problems. Mathematics Magazine, N. 9 (1996), 15-27. https://doi.org/10.1080/0025570X.1996.11996375
[5] De Villiers, M. Dual generalisations of Van Aubel's theorem. The Mathematical Gazette, N. 82 (1998), 405412. https://doi.org/10.2307/3619886
[6] De Villiers, M. Rethinking proof with Sketchpad. Emeryville: Key Curriculum Press (2012).
[7] De Villiers, M., Humenberger, H., Schuppar, B. Jha and Savaran's generalisation of Napoleon's theorem. Global Journal of Advanced Research on Classical and Modern Geometries (GJARCMG), N. 11 (2022), 190-197. https:/ / geometry-math-journal.ro/pdf/Volume11-Issue2/4.pdf
[8] Fried, M. From any two directly similar figures, produce a new one. International Journal of Geometry, N. 10 (2021), 90-94. https://ijgeometry.com/wp-content/uploads/2021/07/8.-90-94.pdf

University of Vienna, Faculty of Mathematics, A - 1090 Vienna, Austria
Faculty of Mathematics, TU Dortmund University, Germany
Faculty of Education (Mathematics), University of Stellenbosch, 7600 Stellenbosch, South Africa
Email address: hans.humenberger@univie.ac.at, berthold.schuppar@tu-dortmund.de, profmd1@mweb.co.za

[^0]: Key words and phrases. Napoleon's theorem, hexagon, equilateral triangles, centroids.

[^1]: ${ }^{1}$ http://www.cut-the-knot.org/m/Geometry/FinalAsymmetricPropeller.shtml
 ${ }^{2}$ A dynamic web sketch illustrating the theorem, and further generalizations discussed later in this paper, is available for the reader at: dynamicmathematicslearning.com/dao-than-oai-napoleon-generalization.html

[^2]: ${ }^{3}$ One can see immediately that Theorem 1 is a generalization of Napoleon's theorem, because in case of $B=C, D=E$, and $F=A$ it is nothing else than Napoleon's theorem.

[^3]: ${ }^{4}$ This is essentially the same as in the original Napoleon configuration (see Fig. 2a), but here formulated and briefly proven again.

[^4]: ${ }^{5} \mathrm{~A}$ dynamic sketch for the case when F is a quadrilateral is available for the reader at http://dynamicmathematicslearning.com/fundamental-theorem-similarity.html.
 ${ }^{6}$ Two similar figures are directly similar if their corresponding angles have the same rotational sense (and are not reversed in relation to each other as in a reflection).
 ${ }^{7}$ The ratio $r:(1-r)$ would - in terms of linear algebra - yield $P^{\prime \prime}=(1-r) P+r P^{\prime}$.

[^5]: ${ }^{8}$ In Fig. 8 these triangles are erected on the sides of a hexagon $A B C D E F$, in order that this fits to our original hexagon problem. But one could also delete the line segments $B C, D E, F A$ so that the hexagon disappears and only the three directly similar triangles are left.
 ${ }^{9}$ At F we have a point mass of 1 , at Z a point mass of 2; then we use the well known law of leverage.

