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Some Hexagon Area Ratios: 

Problem Solving by Related Example  

 

Michael De Villiers 

 

Have you seen it before? Or have you seen the same problem in a slightly different 
form? Do you know a related problem? Do you know a theorem that could be 
useful? Look at the unknown! And try to think of a familiar problem having the 
same or a similar unknown. Here is a problem related to yours and solved before. 
Could you use it? Could you use its result? Could you use its method? 

George Polya (1945) 
 
As starters, I would like to strongly encourage the reader to try to prove each of the three 
conjectures in this article before looking at my solutions as some readers may very well 
find even shorter, more elegant proofs than those give here. However, if the reader is not 
successful in finding a proof, s/he is likely to benefit far more from reading further than 
someone who hasn’t tried at all. 
 
Conjecture 
One obvious way of generalizing the concept of a parallelogram to hexagons is to that of 
a parallelo-hexagon (a hexagon with opposite sides equal and parallel). Recently I was 
playing around with Sketchpad when I discovered the following interesting property of a 
parallelo-hexagon: if G, H, I, and J are the respective midpoints of the sides AB, BC, DE 
and EF of a parallelo-hexagon ABCDEF, then area ABCDEF = 2 area GHIJ (Figure 1). 

 
Figure 1 

Dragging the parallelo-hexagon into different shapes, including into concave and crossed 
cases, quickly convinced me of the generality of the result. But why was it true? Could I 
derive an explanatory proof for it?  
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Related problem 
The problem immediately reminded me of a similar related problem, namely, Varignon’s 
Theorem, which states that the midpoints of the sides of any quadrilateral (including 
crossed ones) form a parallelogram half the area of the original quadrilateral. In De 
Villiers (2003) two different proofs are given (see Figure 2).  
 
The one proof uses the easily-demonstrated fact that area ∆AEH = ¼ area of ∆ABD, and 
then writing the area of the other three ‘outer’ triangles similarly, one simply subtracts 
the area of these triangles from that of the whole quadrilateral ABCD, and rearrange to 
get the desired result. The other proof is more visual and involves translating the 
parallelogram EFGH by vector EH as shown, then demonstrating that the sum of the 
areas of the triangles outside EFGH equals the area of the translated parallelogram 
HGG´H´. For example, ∆HDH´ is congruent to ∆HAE, ∆GDG´ is congruent to ∆GCF, 
∆H´DG is congruent to triangle ∆EBF, from which the result then follows. 

 
Figure 2 

Considering Figure 1, like in the first proof of the Varignon area result, we can easily see 
that area ∆BHG = ¼ area ∆BCA, but then we get stuck writing the area of CDIH in terms 
of area CDEB. So let us try the other approach. 
 
Proof 
The parallelo-hexagon ABCDEF obviously has half-turn symmetry since it has opposite 
sides equal and parallel. From symmetry of the constructed midpoints, it follows that 
GHIJ also has half-turn symmetry, and GHIJ is therefore a parallelogram. 
 
Here, for the sake of simplicity, we will consider only proofs of the convex and concave 
cases. Translate parallelogram GHIJ by vector GH as shown in Figure 3 for a convex and 
a concave case. We now have by the side-angle-side congruency condition, ∆HCH´ 
congruent to ∆HBG and ∆IDI´ congruent to ∆IEJ. Since both corresponding sides and 
angles are respectively equal, it follows that CH´I´D is also congruent to AGJF. In the 
convex case, we now have the areas of ∆HCH´, HCDI, CH´I´D, and ∆IDI´ adding up to 
the area of HH´I´I, from which the required result follows. Similarly, in the concave case, 
the sum of the areas of HCDI and CH´I´D minus the sum of the areas of ∆HCH´ and 
∆IDI´ gives the desired result. 
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Figure 3 

 
Figure 4 

 
Looking back 
Further reflection on the result shows that we can perhaps more easily demonstrate the 
result by giving each of the two triangles and the two quadrilaterals outside GHIJ a half-
turn around the respective midpoints of the sides of GHIJ as shown for the convex 
parallelo-hexagon in Figure 4 to show that they cover GHIJ. 
 
Another conjecture 
As pointed out by Polya and others, answers to mathematical problems are seldom the 
end, but frequently prompt the beginning of new questions. So it’s natural to ask: what 
happens to the area ratios if we connect the midpoints of all the sides of a parallelo-
hexagon? Investigation with Sketchpad quickly shows that in this case the area of the 
formed hexagon GHIJKL is ¾ the area of ABCDEF. 
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Figure 5 

 
Proof 
Consider the convex hexagon ABCDEF shown in Figure 5 (the concave case is left to the 
reader). In this case, we now want to prove that the sum of the areas of the triangles 
outside GHIJKL = 1/3 area GHIJKL to complete the proof. 
 
Firstly note as before, from symmetry, that GHIJKL is also a parallelo-hexagon. Next 
note that KJ // FD and KJ = ½ FD, but FD // LI and FD = LI is given by construction. 
Hence, KJ // LI and KJ = ½ LI. This implies KJ is parallel and equal to both LS and SI, 
where S is the midpoint of LI. Now translate ∆IDJ by vector JK to map to ∆SE´K, and 
∆LFK by vector KJ to map to ∆SE´J as shown. Since E´JEK is a parallelogram, a half-
turn of ∆JEK around the midpoint of KJ would map it onto ∆KE´J. 
 
We now have that the sum of the areas of triangles IDJ, JEK and LFK equal to the area of 
triangle SKJ. So the area of parallelogram LSJK equals twice the sum of the areas of 
triangles IDJ, JEK and LFK. But from symmetry, triangles IDJ, JEK and LFK are 
congruent to the corresponding triangles directly opposite them, and also outside 
GHIJKL, and hence the area of parallelogram LSJK equals the sum of the areas of all the 
triangles outside GHIJKL. 
 
But parallelogram LSJK is equal in area to parallelogram SIJK (same base JK and 
between same parallels). However, parallelogram SIJK is equal in area to parallelogram 
HIJS (same base IJ and between same parallels), which in turn can be shown by 
continuing in the same way to be equal in area to parallelogram GHSL. In other words, 
GHIJKL is subdivided into parallelograms LSJK, HIJS and GHSK, all of equal area. This 
shows that the area of parallelogram LSJK = 1/3 area of GHIJKL, and completes the 
proof for the convex case. 
 
Still another conjecture 
But what happens to the area ratios if we connect the midpoints of the alternate sides of a 
parallelo-hexagon? Investigation with Sketchpad quickly shows that in this case the area 
of the formed triangle ∆GHI is 3/8 the area of ABCDEF. 
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Figure 6 

 
Proof 
Perhaps not surprisingly, it is easy to see visually as shown in Figure 6 for a convex 
parallelo-hexagon, why the area of GHI is half that of the parallelo-hexagon GJHKIL. 
But from the preceding result we saw that GJHKIL has area ¾ that of ABCDEF, and thus 
proves the result. 
 
Explore More 
It seems natural to expect the above results to generalize to similar constant area ratios 
for inscribed polygons of a parallelo-octagon, but a quick inspection by dynamic 
geometry software will convince the reader that this not the case. 

 
Concluding comments 
Hopefully this article has shown that problem solving does not occur in a vacuum, but 
one is frequently required to draw on one’s toolbox of accumulated past experiences of 
solving problems. It is often useful to recall proof techniques of related problems 
previously done as they may hold the key to opening the door to a proof of a result one is 
currently exploring. For example, in the first conjecture, we saw how translating the 
parallelogram similarly to the case for Varignon’s theorem, immediately brought success. 
Further reflection led to realizing that the same result could be obtained differently by 
using half-turns on the outer polygons, and continuing in a similar vein, proofs were 
constructed for the other two conjectures.  
 
Note that we didn’t use Varignon’s theorem itself, but that it was its proof that was useful 
in tackling these new conjectures. It is precisely for this reason that Yehuda Rav (1999) 
has eloquently, and perhaps provocatively, argued it is proofs rather than theorems that 
are the bearers of mathematical knowledge:  

Theorems are in a sense just tags, labels for proofs, summaries of information, 
headlines of news, editorial devices. The whole arsenal of mathematical 
methodologies, concepts, strategies and techniques for solving problems, the 
establishment of interconnections between theories, the systematization of results 
— the entire mathematical know-how is embedded in proofs… Think of proofs as a 
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network of roads in a public transportation system, and regard statements of 
theorems as bus stops; the site of the stops is just a matter of convenience. 

Consequently, Rav argues that proofs that provide useful methods, powerful tools and 
generalizable concepts for solving problems should be the primary focus of mathematical 
study, not so much theorems as such. In discussing Rav’s paper, Hanna & Barbeau 
(2008) give two insightful case studies of mathematical examples of proof at the 
secondary-school level that lend themselves to the introduction of useful mathematical 
methods, tools, strategies and concepts. 
 
It is hoped that this paper has similarly and modestly contributed a third case, which even 
though the results may not fall into the main stream curriculum at school, is easily 
accessible for talented high school students at the mathematics competition level. More 
generally, the strategy of transforming a figure, by ‘cutting up and pasting in’ parts of the 
figure by using transformations to show areas equivalent, is a useful strategy that features 
in many places, including finding a formula for the area of a triangle, parallelogram or 
trapezium, and even in many proofs of the theorem of Pythagoras. 
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