Geometry

G1. The points P and Q are chosen on the side $B C$ of an acute-angled triangle $A B C$ so that $\angle P A B=\angle A C B$ and $\angle Q A C=\angle C B A$. The points M and N are taken on the rays $A P$ and $A Q$, respectively, so that $A P=P M$ and $A Q=Q N$. Prove that the lines $B M$ and $C N$ intersect on the circumcircle of the triangle $A B C$.

Solution 1. Denote by S the intersection point of the lines $B M$ and $C N$. Let moreover $\beta=\angle Q A C=\angle C B A$ and $\gamma=\angle P A B=\angle A C B$. From these equalities it follows that the triangles $A B P$ and $C A Q$ are similar (see Figure 1). Therefore we obtain

$$
\frac{B P}{P M}=\frac{B P}{P A}=\frac{A Q}{Q C}=\frac{N Q}{Q C}
$$

Moreover,

$$
\angle B P M=\beta+\gamma=\angle C Q N
$$

7 Hence the triangles $B P M$ and $N Q C$ are similar. This gives $\angle B M P=\angle N C Q$, so the ariangles $B P M$ and $B S C$ are also similar. Thus we get

$$
\angle C S B=\angle B P M=\beta+\gamma=180^{\circ}-\angle B A C
$$

which completes the solution.

Figure 1

Figure 2

Solution 2. As in the previous solution, denote by S the intersection point of the lines $B M$ and $N C$. Let moreover the circumcircle of the triangle $A B C$ intersect the lines $A P$ and $A Q$ again at K and L, respectively (see Figure 2).

Note that $\angle L B C=\angle L A C=\angle C B A$ and similarly $\angle K C B=\angle K A B=\angle B C A$. It implies that the lines $B L$ and $C K$ meet at a point X, being symmetric to the point A with respect to the line $B C$. Since $A P=P M$ and $A Q=Q N$, it follows that X lies on the line $M N$ Therefore, using PASCAL's theorem for the hexagon $A L B S C K$, we infer that S lies on the circumcircle of the triangle $A B C$, which finishes the proof.

Comment. Both solutions can be modified to obtain a more general result, with the equalities

$$
A P=P M \quad \text { and } \quad A Q=Q N
$$

replaced by

$$
\frac{A P}{P M}=\frac{Q N}{A Q}
$$

