
Page 22 
 

Learning and Teaching Mathematics, No. 39, 2025, pp. 22-25 
 

An Interesting Locus Result 

Duncan Samson1 & Moshe Stupel2 
1Victoria Girls’ High School, Makhanda (Grahamstown) 
2Givat Washington Academic College, Israel 
dsamson@vghs.co.za      stupel@bezeqint.net   

 

INTRODUCTION 

Senior high school pupils will be familiar with the “midpoint theorem” – the Euclidean geometry theorem 
that states that the line joining the midpoints of two sides of a triangle is parallel to the third side (and equal 
to half the length of the third side). This well-known theorem is illustrated in Figure 1. 

 
FIGURE 1:  The midpoint theorem. 

 
A somewhat less intuitive, but related scenario, is the following. Consider a straight line 𝑓 and a fixed point 
A not on 𝑓. Create a series of straight-line segments by joining point A to a variety of different points on 𝑓 
as illustrated in Figure 2. 

 
FIGURE 2:  Straight-line segments from A to 𝑓. 

 
Next construct the midpoint of  each of  these line segments. You may be surprised to find that not only are 
all of  these midpoints collinear, but the straight line passing through them (𝑔) is parallel to the original 
straight line 𝑓 (Figure 3). Linking this scenario back to the midpoint theorem sheds light, from a geometric 
perspective, on why the midpoints are collinear as well as why the line passing through them is parallel to 𝑓. 
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FIGURE 3:  Collinear midpoints. 

 
How could we go about determining the equation of  𝑔, the line passing through the midpoints? Let us take 
the equation of  𝑓 to be 𝑦0 = 𝑚𝑥0 + 𝑐, and the coordinates of  A to be (𝑎; 𝑏). What we now need to determine 
is the equation representing the locus of  all points (𝑥; 𝑦) lying on the midpoints of  the line segments drawn 
from A to 𝑓. 

 
FIGURE 4:  Determining the locus of points (𝑥; 𝑦) lying on the midpoints of the line segments. 

 
Since (𝑥; 𝑦) is the midpoint of  the line segment, we have: 

𝑥 =
𝑎 + 𝑥0

2
   →    𝑥0 = 2𝑥 − 𝑎 

𝑦 =
𝑏 + 𝑦0

2
   →    𝑦0 = 2𝑦 − 𝑏 

We can now substitute the above expressions for 𝑥0 and 𝑦0 as follows: 

𝑦0 = 𝑚𝑥0 + 𝑐 

∴    2𝑦 − 𝑏 = 𝑚(2𝑥 − 𝑎) + 𝑐 

∴    2𝑦 = 2𝑚𝑥 − 𝑚𝑎 + 𝑐 + 𝑏 

∴    𝑦 = 𝑚𝑥 +
𝑏 + 𝑐 − 𝑚𝑎

2
 

This is the equation of  the locus of  all points (𝑥; 𝑦) lying on the midpoints of  the line segments drawn from 
A to 𝑓. Note that the gradient of  this line is also 𝑚, as it was for the original line 𝑓. This then confirms, from 
an algebraic perspective, not only that the midpoints lie on a straight line, but that this line is parallel to the 
original straight line.  
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EXTENDING THE IDEA 

If this works for straight lines, would it also work for other functions? Let us consider a simple parabola 
such as 𝑓(𝑥) = 1

4
𝑥2. As before, plot a fixed point A not on the parabola and create a series of straight-line 

segments from A to a variety of different points on 𝑓. Now construct the midpoint of each of these straight-
line segments. Rather pleasingly, these midpoints also line up in the form of a parabola, irrespective of the 
position of the fixed point A (Figure 5).  
 

          

FIGURE 5:  Joining the midpoints. 
 

Let us now try to confirm algebraically that the midpoints do indeed line up on a parabolic curve. 
Additionally, let us try to establish what the relationship is between the original parabola and that represented 
by the locus of  points lying on the midpoints of  the line segments.  

Let us take the equation of  the original parabola to be 𝑦0 = 𝑘𝑥0
2, and the coordinates of  A to be (𝑎; 𝑏). 

What we now need to determine is the equation representing the locus of  all points (𝑥; 𝑦) lying on the 
midpoints of  the line segments drawn from A to 𝑦0 = 𝑘𝑥0

2. 

 

 

FIGURE 6:  Determining the locus of points (𝑥; 𝑦) lying on the midpoints of the line segments. 
 
 



Page 25 
 

Learning and Teaching Mathematics, No. 39, 2025, pp. 22-25 
 

Since (𝑥; 𝑦) is the midpoint of  the line segment, we have: 

𝑥 =
𝑎 + 𝑥0

2
   →    𝑥0 = 2𝑥 − 𝑎 

𝑦 =
𝑏 + 𝑦0

2
   →    𝑦0 = 2𝑦 − 𝑏 

We can now substitute the above expressions for 𝑥0 and 𝑦0 as follows: 

𝑦0 = 𝑘𝑥0
2 

∴    2𝑦 − 𝑏 = 𝑘(2𝑥 − 𝑎)2 

∴    2𝑦 = 𝑘(2𝑥 − 𝑎)2 + 𝑏 

∴    2𝑦 = 𝑘 (2 (𝑥 −
𝑎
2

))
2

+ 𝑏 

∴    𝑦 = 2𝑘 (𝑥 −
𝑎
2

)
2

+
𝑏
2

 

This is the equation of  the locus of  all points (𝑥; 𝑦) lying on the midpoints of  the line segments drawn from 
A to the parabola. The equation confirms that the locus of  points is indeed parabolic. Note also that the 
axis of  symmetry of  the new parabola is parallel to the axis of  symmetry of  the original parabola. 
Additionally, note that the “stretch factor” of  the new parabola is twice that of  the original (2𝑘 versus 𝑘 in 
the original). 

While we have only considered simple parabolas of  the form 𝑦 = 𝑘𝑥2, i.e. that have a turning point at the 
origin, the result would still hold true for parabolas containing a vertical and/or horizontal shift. 

CONCLUDING COMMENTS 

While the midpoint theorem is familiar to senior high school pupils, reimagining this idea from a slightly 
different perspective (i.e. exploring the locus of  midpoints of  a series of  straight-line segments drawn from 
a fixed point to an arbitrary straight line) leads to an interesting, and perhaps less intuitive, result – namely 
that the locus of  midpoints is a straight line parallel to the original straight line. We then took this basic idea 
and extended it to the case of  a simple parabola with turning point at the origin and showed that in this case 
the locus of  midpoints also forms a parabola with some interesting relationships to the original parabola. 
Similar locus observations occur in the case of  the circle, ellipse and hyperbola, as well as other curves. 
Furthermore, while we have only considered the midpoints of  the line segments, any fixed division of  the 
straight-line segments would work. 

One of  the great joys of  mathematics is how different concepts link, and how looking at a given scenario 
from different perspectives can lead to different insights and deeper understanding. With reference to Figure 
5, we could reimagine the process as a dilation (reduction) of  the parabola by a factor ½ from point A. From 
this transformation perspective it becomes clear why the process would work for any curve1, as well as any 
fixed division of  the straight-line segments.  

 

                                                 
1 See for example the following webpage by Michael de Villiers:  
http://dynamicmathematicslearning.com/mystery-transform.html 

 


