Eighth Meeting, 11th June 1897.
J. B. Clark, Esq., M.A., Vice-President, in the Chair.

## Isogonic Centres of a Triangle.

By J. S. Mackay, M.A., LL.D.

## Theorem 1

If on the sides of a triangle $A B C$ equilateral triangles $L B C$ MCA $N A B$ be described externally, $A L B M$ CN are equal and concurrent.*

## Figure 28

For triangles BAM NAC are congruent, since two sides and the contained angle in the one are equal to two sides and the contained angle in the other ;

| therefore | $B M=N C$. |
| :--- | :--- |
| Similarly | $N C=A L$. |

Let BM CN meet at V. Join AV LV
Since $\quad \angle \mathrm{VBA}=\angle \mathrm{VNA}$
therefore $V$ lies on the circumcircle of $A B N$
and $\quad \angle \mathrm{AVB}=120^{\circ}$
Similarly V lies on the circumcircle of CAM
and $\quad \angle \mathrm{CVA}=120^{\circ}$
therefore $\quad \angle B V C=120^{\circ}$
therefore V lies on the circumcircle of BCL
Hence

$$
\angle \mathrm{LVC}=\angle \mathrm{LBC}=60^{\circ},
$$

and $A V L$ is a straight line.

## Theorem 2

If on the sides of a triangle $A B C$ equilateral triangles $L^{\prime} B C \quad M^{\prime} C A \quad N^{\prime} A B$ be described internally, $A L^{\prime} \quad B M^{\prime} \quad C N^{\prime}$ are equal and concurrent

[^0]
## Figure 28

The demonstration of the previous case may be easily modified to suit this one.

Let the point of concurrency be denoted by $\mathrm{V}^{\prime}$.
The points $V V^{\prime}$ are called the isogonic centres of ABC .

$$
\text { Positions of } V \text { and } \mathrm{V}^{\prime}
$$

V
When each of the angles A B C is less than $120^{\circ}, \mathrm{V}$ is inside ABC .

When any one of the angles $\mathbf{A} \mathbf{B} \mathbf{C}$ is greater than $120^{\circ}$, $V$ is outside $A B C$. For example, if $A$ be greater than $120^{\circ}$, V lies between BA and CA produced.

When ABC is equilateral, its centroid, circumcentre, incentre, orthocentre all coincide, and $V$ coincides with them.

$$
\mathrm{V}^{\prime}
$$

When $B$ is greater than $60^{\circ}$ and $C$ is less than $60^{\circ}, V^{\prime}$ is outside ABC and between CA and CB produced.

When $B$ is less than $60^{\circ}$ and $C$ is greater than $60^{\circ}, V^{\prime}$ is outside ABC and between BA and BC produced.

When $B$ and $C$ are both greater than $60^{\circ}$, or both less than $60^{\circ}$, $V^{\prime}$ is outside $A B C$ and between $A B$ and $A C$ produced.

When one of the angles of $A B C$, for example $B$, is $60^{\circ}$, $\mathrm{V}^{\prime}$ coincides with B .

When ABC is equilateral, $V^{\prime}$ may be anywhere on the circumcircle of ABC.

Theorem 1 is closely connected with the problem
To find that point the sum of whose distances from the vertices of a triangle is a minimum.

This problem, Viviani relates, was proposed by Fermat to Torricelli, and by him handed over as an exercise to Viviani, who gives* the following construction for obtaining the point.

Let ABC be the triangle, and let each of its angles be less than $120^{\circ}$.

[^1]On $A B$ and $A C$ describe segments of circles containing angles of $120^{\circ}$. The arcs of these segments will intersect at the point required.

Viviani's proof that this is the point required is too long to extract.

Thomas Simpson in his Doctrine and Application of Fluxions, $\S 36$ (1750) gives the following construction for determining the same point.

Describe on BC a segment of a circle to contain an angle of $120^{\circ}$, and let the whole circle BCQ be completed. From A to $\mathbf{Q}$, the middle of the arc $B Q C$, draw $A Q$ intersecting the circumference of the circle in $V$, which will be the point required.

In §431, Simpson treats the more general problem,
Three points A B C being given, to find the position of a fourth point $P$, so that if lines be drawn from thence to the three former, the sum

$$
a \cdot \mathrm{AP}+b \cdot \mathrm{BP}+c \cdot \mathrm{CP}
$$

where $a b c$ denote given numbers, shall be a minimum.
Both the particular and the more general problem are discussed $\dagger$ by Nicolas Fuss in his memoir "De Minimis quibusdam geometricis, ope principii statici inventis" read to the Petersburg Academy of Sciences on 25th February 1796. In this memoir, denoting $\mathbf{A V}+\mathbf{B V}+\mathrm{CV}$ by $s$, Fuss gives the expressions

$$
\begin{gathered}
\mathrm{AV}=\frac{1}{3} s+\frac{b^{2}+c^{2}-2 a^{2}}{3 s} \\
\mathrm{BV}=\frac{1}{3} s+\frac{c^{2}+a^{2}-2 b^{2}}{3 s} \\
\mathrm{CV}=\frac{1}{3} s+\frac{a^{2}+b^{2}-2 c^{2}}{3 s} \\
\mathrm{BV} \cdot \mathrm{CV}+\mathrm{CV} \cdot \mathrm{AV}+\mathrm{AV} \cdot \mathrm{BV}=\frac{4 \Delta}{\sqrt{3}} \\
\mathrm{AV}+\mathrm{BV}^{2}+\mathrm{CV}^{2}=\frac{a^{2}+b^{2}+c^{2}}{2}-\frac{2 \Delta}{\sqrt{3}} \\
\mathrm{AV}+\mathrm{BV}+\mathrm{CV}=\sqrt{\left(\frac{a^{2}+b^{2}+c^{2}}{2}+2 \Delta \sqrt{3}\right)}
\end{gathered}
$$

[^2]The following are some of the properties that may be deduced from the figure consisting of a triangle and the equilateral triangles described on its sides.
(1)*

$$
\begin{array}{ll}
L V=B V+C V & L^{\prime} V^{\prime}=B V^{\prime}+C V^{\prime} \\
M V=C V+A V & M^{\prime} V^{\prime}=C V^{\prime}+A V^{\prime} \\
N V=A V+B V & N^{\prime} V^{\prime}=A V^{\prime}+B V^{\prime}
\end{array}
$$

Care must be taken to affix the proper algebraic sign ( + or - ) according to the position of $V$ or $V^{\prime}$

To prove

$$
L V=B V+C V
$$

Ptolemy's theorem applied to the cyclic quadrilateral VBLC gives
or

$$
\begin{aligned}
& \mathrm{LV} \cdot \mathrm{BC}=\mathrm{BV} \cdot \mathrm{LC}+\mathrm{CV} \cdot \mathrm{LB} \\
& \mathrm{LV} \cdot \mathrm{BC}=\mathrm{BV} \cdot \mathrm{BC}+\mathrm{CV} \cdot \mathrm{BC}
\end{aligned}
$$

therefore
(2)*

$$
\begin{aligned}
& A L=B M=C N=A V+B V+C V \\
& A L^{\prime}=B M^{\prime}=C N^{\prime}=A V^{\prime}+B V^{\prime}+C V^{\prime}
\end{aligned}
$$

with proper algebraic signs prefixed.
(3) $\dagger$ The following six triangles are congruent to $A B C$, and the centres of their circumcircles lie all on the circumcircle of $A B C$;

$$
A N^{\prime} M \quad A N M^{\prime} \quad N B L^{\prime} \quad N^{\prime} B L \quad M^{\prime} L C \quad M L^{\prime} C
$$

This may be proved by rotating the triangle $A B C$ round $A$ through an angle of $60^{\circ}$, first counterclockwise, and second clockwise; then doing the same thing round $B$, and round $C$.
(4) $\ddagger$ The internal equilateral triangle described on any side cuts a side of each of the external equilateral triangles on the circumcircle of $A B C$.

Let AM' meet BL at D.

[^3]Since $\quad \angle C A D$ and $\angle C B D$ are each $60^{\circ}$,
therefore A BCD are concyclic*
(5) $\dagger$

$$
\begin{aligned}
A L^{2}+A L^{\prime 2} & =B M^{2}+B M^{\prime 2}=C N^{2}+C N^{\prime 2} \\
& =a^{2}+b^{2}+c^{2}
\end{aligned}
$$

Join LL',
Then BC LL' bisect each other perpendicularly in $\mathrm{A}^{\prime}$;
therefore $\quad A L^{2}+A L^{\prime 2}=2 A A^{\prime 2}+2 A^{\prime} L^{2}$
$=2 A^{\prime 2}+6 A^{\prime} B^{2}$
$=2 A^{\prime 2}+2 A^{\prime} B^{2}+4 A^{\prime} B^{2}$
$=A B^{2}+\mathbf{A} \mathbf{C}^{2}+\mathbf{B} \mathbf{C}^{2}$
(6) $\dagger$

$$
\begin{aligned}
A L^{2}-A L^{\prime 2} & =B M^{2}-B M^{\prime 2}=C N^{2}-C N^{\prime 2} \\
& =4 \sqrt{3} \triangle=\frac{a b c \sqrt{3}}{R}
\end{aligned}
$$

Draw AK perpendicular to LL'.
Then $\mathrm{AL}^{2}-\mathrm{AL}^{\prime 2}=\mathrm{LK}^{2}-\mathrm{L}^{\prime} \mathbf{K}^{2}$
$=\left(L K+L^{\prime} K\right)\left(L K-L^{\prime} K\right)$
$=2 \mathrm{~A}^{\prime} \mathrm{L} .2 \mathrm{~A}^{\prime} \mathrm{K}$
$=2 \sqrt{3} \mathrm{~A}^{\prime} \mathrm{B} \cdot 2 \mathrm{~A}^{\prime} \mathrm{K}$
$=4 \sqrt{3} \triangle=\frac{a b c \sqrt{3}}{\mathrm{R}}$
(7) $\ddagger$

$$
\begin{aligned}
& A L^{2}=\frac{1}{2}\left(a^{2}+b^{2}+c^{2}+\frac{a b c \sqrt{3}}{\mathbf{R}}\right) \\
& A L^{\prime 2}=\frac{1}{2}\left(a^{2}+b^{2}+c^{2}-\frac{a b c \sqrt{3}}{\mathbf{R}}\right)
\end{aligned}
$$

(8)§

$$
\begin{aligned}
& A L^{2}=a^{2}+b^{2}-2 a b \cos \left(C+60^{\circ}\right) \\
& A L^{\prime 2}=a^{2}+b^{2}-2 a b \cos \left(C-60^{\circ}\right)
\end{aligned}
$$

* D will be used for a different point in (9).
$\dagger$ Rev. William Mason in the Lady's and Gentleman's Diary for 1865, p. 75. His proof is different from that in the text.
$\ddagger$ Rev. William Mason in the Lady's and Gentleman's Diary for 1865, p. 74
$\$$ The first of these expressions is given in T. S. Davies's edition of Hutton's Course of Mathematics, I. 470 (1841). It is aaid to occur also in Heinen, Ueber Systeme von Kräften (1834)
(9)* If $A L \quad B M \quad C N$ meet $B C \quad C A A B$ at $D \quad E \quad F$
then

$$
\frac{1}{V D}+\frac{1}{V E}+\frac{1}{V F}=\frac{2}{A V}+\frac{2}{B V}+\frac{2}{C V}
$$

For triangles BVD LVC are similar ;
therefore

$$
B V: V D=L V: C V ;
$$

therefore

$$
B V \cdot C V=V D \cdot J V
$$

$$
=V D(B V+C V)
$$

$$
\frac{1}{\mathrm{VD}}=\frac{1}{\mathrm{BV}}+\frac{1}{\mathrm{CV}}
$$

Similarly

$$
\frac{1}{\mathrm{VE}}=\frac{1}{\mathrm{CV}}+\frac{1}{\mathrm{AV}}
$$

and

$$
\frac{1}{\overline{V F}}=\frac{1}{A V}+\frac{1}{B V}
$$

whence the required result follows.
A corresponding result is true for the point $\mathrm{V}^{\prime}$ but care must be taken to prefix the proper signs.
$(10) \dagger \quad A L^{2} \cdot A L^{\prime 2}=\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)+\left(b^{2}-c^{2}\right)^{2}$
with corresponding values for $B M^{2} . B M^{\prime 2} \quad C N^{2} . C N^{\prime 2}$.
From (7) there is obtained

$$
\begin{align*}
\mathrm{AL}^{2} \cdot \mathrm{AL}^{\prime 2} & =\left(\frac{a^{2}+b^{2}+c^{2}}{2}\right)^{2}-\frac{3}{4} \cdot \frac{a^{2} b^{2} c^{2}}{\mathrm{R}^{2}} \\
& =\frac{1}{4}\left(a^{4}+b^{4}+c^{4}+2 b^{2} c^{2}+2 c^{2} a^{2}+2 a^{2} b^{2}\right) \\
& -\frac{3}{4}\left(-a^{4}-b^{4}-c^{4}+2 b^{2} c^{2}+2 c^{2} a^{2}+2 a^{2} b^{2}\right) \\
& =a^{4}+b^{4}+c^{4}-b^{2} c^{2}-c^{2} a^{2}-a^{2} b^{2} \\
1) \ddagger \quad & A L \cdot A V=\frac{b^{2}+c^{2}-a^{2}}{2}+\frac{a b c}{2 R \sqrt{3}}  \tag{11}\\
& A L^{\prime} \cdot A V^{\prime}=\frac{b^{2}+c^{2}-a^{2}}{2}+\frac{a b c}{2 R \sqrt{3}}
\end{align*}
$$

[^4]For

$$
\begin{aligned}
& \mathrm{AV}=A B \frac{\sin \mathrm{ABM}}{\sin 120^{\circ}}=\frac{2 c}{\sqrt{3}} \sin \left(\mathrm{~A}+60^{\circ}\right) \frac{b}{\mathrm{BM}} \\
& A V^{\prime}=A B \frac{\sin \mathbf{A B M ^ { \prime }}}{\sin 60^{\circ}}=\frac{2 c}{\sqrt{3}} \sin \left(\mathrm{~A}-60^{\circ}\right) \frac{b}{\mathrm{BM}^{\prime}}
\end{aligned}
$$

and

$$
\mathrm{AL}=\mathrm{BM} . \quad \mathrm{AL}^{\prime}=\mathrm{BM}^{\prime} ;
$$

whence, after making the necessary substitutions, the results follow.

$$
\begin{equation*}
A L^{2} \cdot A L^{\prime 2} \cdot V V^{\prime 2}=3 a^{2} b^{2} c^{2}-\frac{a^{2} b^{2} c^{2}}{3 R^{2}}\left(a^{2}+b^{2}+c^{2}\right) \tag{12}
\end{equation*}
$$

For

$$
\begin{aligned}
-2 \mathrm{AL} \cdot \mathrm{AL} \mathrm{~L}^{\prime} \cos \mathrm{VA} \mathbf{V}^{\prime} & =\mathrm{AL}^{2}+\mathrm{AL}^{\prime 2}-\mathrm{I} \mathrm{~L}^{\prime 2} \\
& =a^{2}+b^{2}+c^{2}-3 a^{2} \\
& =b^{2}+c^{2}-2 a^{2} ;
\end{aligned}
$$

therefore $A L^{2} \cdot A L^{\prime 2} \cdot V V^{\prime 2}$
$=(\mathrm{AL} \cdot \mathrm{AV})^{2} \mathrm{AL}^{\prime 2}+\left(\mathrm{AL}^{\prime} \cdot \mathrm{AV}^{\prime}\right)^{2} \mathrm{AL}^{2}+(\mathrm{AL} \cdot \mathrm{AV})\left(\mathrm{AL}^{\prime} \cdot \mathrm{AV}^{\prime}\right)\left(b^{2}+c^{2}+2 a^{2}\right)$
$=3 a^{2} b^{2} c^{2}-\frac{a^{2} b^{2} c^{2}}{3 \mathbf{R}^{2}}\left(a^{2}+b^{2}+c^{2}\right)$
(13) $\mathrm{AL}^{2} . \mathrm{OV}^{2}=\mathrm{R}^{2} \frac{a^{2}+b^{2}+c^{2}}{2}-\frac{a^{2} b^{2} c^{2}}{6 \mathrm{R}^{2}}+\frac{\mathrm{R} \sqrt{3}}{2 a b c} \mathrm{AL}^{2} . \mathrm{AL}^{\prime 2} . \mathrm{VV}^{\prime 2}$

$$
\mathrm{AL}^{\prime 2} \cdot \mathrm{OV}^{\prime 2}=\mathrm{R}^{2} \frac{a^{2}+b^{2}+c^{2}}{2}-\frac{a^{2} b^{2} c^{2}}{6 \mathrm{R}^{2}}-\frac{\mathrm{R} \sqrt{3}}{2 a b c} \mathrm{AL}^{2} \cdot \mathrm{AL}^{\prime 2} \cdot \mathrm{VV}^{\prime 2}
$$

The investigation is too long to be inserted here; the initial steps are

$$
2 \mathrm{AL} \cdot \mathrm{AO} \cos \mathrm{OAV}=\mathrm{AL}^{2}+\mathrm{AO}^{2}-\mathrm{OL}^{2}
$$

$$
=A L^{2}+R^{2}-\left(\operatorname{Rcos} A+\frac{\sqrt{3}}{2} a\right)^{2} ;
$$

and $\quad \mathrm{AL}^{2} \cdot \mathrm{OV}^{2}=\mathrm{AL}^{2}\left(\mathrm{AO}^{2}+\mathrm{AV}^{2}-2 \mathrm{AO} . \mathrm{AV} \cos \mathrm{OAV}\right)$;
whence, by substitution, the first result follows.

$$
\begin{equation*}
O V^{2}+O V^{2}+V V^{\prime 2}=2 R^{2} \tag{14}
\end{equation*}
$$

Multiply the first equality in (13) by $\mathrm{AL}^{/ 2}$

$$
" \text { second } " \quad \text { (13) " } \mathrm{AL}^{2} \text {; }
$$

add, and make use of the equalities in (5), (6);
then $A L^{2} \cdot A L^{\prime 2}\left(O V^{2}+O V^{\prime 2}+V V^{\prime 2}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{R}^{2}\left(a^{2}+b^{2}+c^{2}\right)-\frac{8}{2} a^{2} b^{9} c^{2} \\
& =2 \mathrm{R}^{2} \cdot \mathrm{AL}^{2} \cdot \mathrm{AL}^{\prime 2}
\end{aligned}
$$

$$
\begin{align*}
& A V^{2}=\frac{b^{2}+c^{2}-a^{2}}{3}+\frac{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)}{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)+\left(b^{2}-c^{2}\right)^{2}} \cdot \frac{A L^{\prime s}}{3}  \tag{15}\\
& A V^{\prime 2}=\frac{b^{2}+c^{2}-a^{2}}{3}+\frac{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)}{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)+\left(b^{2}-c^{2}\right)^{2}} \cdot \frac{A L^{2}}{3}
\end{align*}
$$

These are obtained from (10) and (11)

$$
\begin{align*}
A V^{2}+B V^{2}+C V^{2} & =\frac{a^{2}+b^{2}+c^{2}}{3}+\frac{A L^{\prime 2}}{3}  \tag{16}\\
& =\frac{a^{2}+b^{2}+c^{2}}{2}-\frac{a b c}{2 R \sqrt{3}} \\
A V^{\prime 2}+B V^{\prime 2}+C V^{\prime 2} & =\frac{a^{2}+b^{2}+c^{2}}{3}+\frac{A L^{2}}{3} \\
& =\frac{a^{2}+b^{2}+c^{2}}{2}+\frac{a b c}{2 R \sqrt{3}}
\end{align*}
$$

For

$$
\begin{gather*}
\left.\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)+b^{2}-c^{2}\right)\left(b^{2}-a^{2}\right)+\left(c^{2}-a^{2}\right)\left(c^{2}-b^{2}\right) \\
=\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)+\left(b^{2}-c^{2}\right)^{2} \\
\Sigma\left(A V^{2}\right)+\Sigma\left(A \nabla^{\prime 2}\right)=a^{2}+b^{2}+c^{2} \tag{17}
\end{gather*}
$$

(18) If $R \quad S T$ be the circumcentres of $L B C M C A N A B$
and $\quad R^{\prime} S^{\prime} T^{\prime \prime}$ be the circumcentres of $L^{\prime} B C \quad M^{\prime} C A \quad N^{\prime} A B$; then $L R^{\prime} M S^{\prime} N T$ are diameters of the first triad of circles and $L^{\prime} R \quad M^{\prime} S N^{\prime} T$ are diameters of the second triad of circles.

For
therefore
and

$$
\angle \mathrm{BR}^{\prime} \mathrm{C}=120^{\circ} ;
$$

$R^{\prime}$ is on the circumcircle of LBC;
(19) $\dagger$ The triangles $R S T \quad R^{\prime} S^{\prime \prime} T^{\prime \prime}$ are equilateral.

Since AV BV CV make with each other angles of $120^{\circ}$, and ST TR RS are respectively perpendicular to them, therefore ST TR RS make with each other angles of $60^{\circ}$, and therefore form an equilateral triangle. $\ddagger$

[^5]Similarly for $\mathrm{R}^{\prime} \mathrm{S}^{\prime} \mathrm{T}^{\prime}$.
Or thus : *

If AT, AS be joined,

$$
\angle \mathrm{TAS}=60^{\circ}+\angle \mathrm{BAC}=\angle \mathrm{NAC} .
$$

Now AT AS are corresponding lines in the similar triangles ANB ACM,
therefore

$$
\mathbf{A N}: \mathbf{A C}=\mathbf{A T}: \mathbf{A S}
$$

therefore triangles CAN SAT are similar;
therefore

$$
\begin{aligned}
\mathrm{CN}: \mathbf{S T} & =\mathbf{C A}: \mathbf{S A} \\
& =\sqrt{3}: 1 ;
\end{aligned}
$$

therefore

$$
\sqrt{3} \mathrm{ST}=\mathrm{CN}
$$

Values equal to this are in like manner found for $T R$ RS;
therefore triangle RST is equilateral.
Similarly $\sqrt{3} \mathrm{~S}^{\prime} \mathrm{T}^{\prime}=\mathrm{CN}^{\prime}$ and $\mathrm{R}^{\prime} \mathrm{S}^{\prime} \mathrm{T}^{\prime}$ is equilateral.
$(20) \dagger$ The sum of the squares of the sides of triangles $R S T R^{\prime} S^{\prime \prime} T^{\prime}$ is equal to $a^{2}+b^{2}+c^{2}$.

$$
\text { For } \quad \begin{aligned}
& 3\left(\mathrm{ST}^{2}+\mathrm{S}^{\prime} \mathrm{T}^{\prime 2}\right)=\mathrm{CN}^{2}+\mathrm{CN}^{\prime 2} \\
&=a^{2}+b^{2}+c^{2} ; \\
& \text { therefore } \quad \\
& \\
& 3\left(\mathrm{~S}^{\prime 2}+\mathrm{S}^{\prime} \mathrm{T}^{\prime 2}+\mathrm{TR}^{2}+\mathrm{T}^{\prime} \mathrm{R}^{\prime 2}+\mathrm{RS}^{2}+\mathrm{R}^{\prime} \mathrm{S}^{\prime 2}\right) \\
&=3\left(c^{2}+b^{2}+c^{2}\right)
\end{aligned}
$$

(21) $\ddagger$ The difference of the areas of triangles $R S T^{\prime} R^{\prime} S^{\prime} T^{\prime \prime}$ is equal to the area of $A B C$; and the sum of the areas of $R S T R^{\prime} S^{\prime \prime} T^{\prime \prime}$ is the arithmetic mean of the three equilateral triangles on $B C \quad C A A B$.

$$
\text { For } \begin{aligned}
& R S T=S^{2} \frac{\sqrt{3}}{4} \\
& R^{\prime} S^{\prime} \mathrm{T}^{\prime}=S^{\prime \prime} \mathrm{T}^{\prime 2} \frac{\sqrt{3}}{4}
\end{aligned}
$$

[^6]therefore
\[

$$
\begin{aligned}
\mathrm{RST}-\mathrm{R}^{\prime} \mathrm{S}^{\prime} \mathrm{T}^{\prime} & =\left(\mathrm{S} \mathrm{~T}^{2}-\mathrm{S}^{\prime} \mathrm{T}^{\prime 2}\right) \frac{\sqrt{3}}{4} \\
& =\frac{1}{3}\left(\mathrm{CN}^{2}-\mathrm{CN}^{\prime 2}\right) \frac{\sqrt{3}}{4} \\
& =\frac{1}{3} \cdot 4 \sqrt{3} \triangle \cdot \frac{\sqrt{3}}{4} \\
\mathrm{RST}+\mathrm{R}^{\prime} \mathrm{S}^{\prime} \mathrm{T}^{\prime} & =\frac{1}{3}\left(\mathrm{CN}^{2}+\mathrm{ON}^{\prime 2}\right) \frac{\sqrt{3}}{4} \\
& =\frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right) \frac{\sqrt{3}}{4}
\end{aligned}
$$
\]

(22)* Triangles RST $R^{\prime} S^{\prime} T^{\prime}$ are homologous, and $O$ the circumcentre of $A B C$ is their centre of homology.

For RR' bisects BC perpendicularly ; therefore $\mathbf{R R}^{\prime}$ passes through 0 .

Similarly for $\mathrm{SS}^{\prime}$ and $\mathrm{Tr}^{\prime}$.
(23) $\dagger$ The equilateral triangles $R S T \quad R^{\prime} S^{\prime \prime} T^{\prime \prime}$ have the same centroid as $A B C$, and their circumcircles pass respectively through $V^{\prime}$ and $V$.

The perpendiculars from $R \quad T$ on $B C$ are

$$
-\frac{a}{\sqrt{3}} \quad \frac{\mathrm{AX}}{2}+\frac{b \cos \mathrm{C}}{\sqrt{3}} \quad \frac{\mathrm{AX}}{2}+\frac{c \cos \mathrm{~B}}{\sqrt{3}}
$$

where AX is the perpendicular from A to BC .
Now

$$
b \cos C+c \cos B=a ;
$$

therefore the sum of these perpendiculars is equal to $\mathbf{A X}$.
Hence the perpendicular on BC from the centroid of RST is equal to $\frac{1}{3} \mathrm{AX}$;
and similarly for the other perpendiculars.
The centroid therefore of RST, and in like manner of $\mathrm{R}^{\prime} \mathrm{S}^{\prime \prime} \mathrm{T}^{\prime}$, is the centroid of ABC

[^7]
## Again <br> $\angle A V^{\prime} B=60^{\circ}$;

therefore $\mathrm{V}^{\prime}$ lies on the circumcircle of $\mathrm{N}^{\prime} \mathrm{AB}$.
Now $\mathrm{N}^{\prime} \mathrm{T}$ is a diameter of this circle ;
therefore
Similarly
$\angle N^{\prime} V^{\prime} T=90^{\circ}$. $-\mathrm{M}^{\prime} \mathrm{V}^{\prime} \mathrm{S}=90^{\circ}$;
$\angle S V^{\prime} T=\angle M^{\prime} V^{\prime} N^{\prime}$
$=\angle B V^{\prime} \mathrm{C}$
$=\angle S R T$;
therefore $\mathrm{V}^{\prime}$ lies on the circumcircle of RST.
(24) If $G$ be the centroid of $A B C$ then

$$
G V=\frac{1}{3} A L^{\prime} \quad G V^{\prime}=\frac{1}{3} A L .
$$

For

$$
\begin{aligned}
3 G V^{2} & =\left(\mathbf{A V}^{2}+\mathbf{B V}^{2}+\mathrm{CV}^{2}\right)-\left(\mathbf{A G}^{2}+\mathbf{B G}^{2}+\mathrm{CG}^{2}\right) \\
& =\left(\frac{a^{2}+b^{2}+c^{2}}{2}-\frac{a b c}{2 \mathbf{R} \sqrt{3}}\right)-\frac{a^{2}+b^{2}+c^{2}}{3} \\
& =\frac{a^{2}+b^{2}+c^{2}}{6}-\frac{a b c}{2 \mathrm{R} \sqrt{3}}=\frac{\mathbf{A L}^{\prime 2}}{3}
\end{aligned}
$$

$$
\begin{equation*}
G O^{2}+G V^{2}+G V^{\prime 2}=R^{2} \tag{25}
\end{equation*}
$$

This follows from (5)
(26) $G V G V^{\prime}$ are the radii of the circumcircles of $R^{\prime} S^{\prime \prime} T^{\prime} \quad R S T$

For by (19)

$$
\begin{aligned}
& \mathbf{S T}=\frac{\mathrm{CN}}{\sqrt{3}}=\frac{\mathrm{AL}}{\sqrt{3}}=\frac{3 \mathrm{GV}^{\prime}}{\sqrt{3}}=\sqrt{3} \mathrm{GV} V^{\prime} \\
& \mathrm{S}^{\prime} \mathrm{T}^{\prime}=\frac{\mathrm{CN}}{}{ }^{\prime} \\
& \sqrt{3}
\end{aligned}=\frac{\mathrm{AL}}{\sqrt{3}}=\frac{3 \mathrm{GV}}{\sqrt{3}}=\sqrt{3} \mathrm{GV}, ~ l
$$

(27) If $G^{\prime \prime}$ be the centroid of the triangle OVV'

$$
G G^{\prime}=\frac{1}{3} R
$$

For $\quad 3 G G^{\prime 2}=\left(G O^{2}+G V^{2}+G V^{\prime 2}\right)-\left(G^{\prime} O^{2}+G^{\prime} V^{2}+G^{\prime} V^{\prime 2}\right)$

$$
\begin{aligned}
& =\quad R^{2} \quad-\frac{1}{3}\left(O V^{2}+O V^{\prime 2}+V V^{\prime 2}\right) \\
& =\quad R^{2}-\frac{2}{3} R^{2}=\frac{1}{3} R^{2}
\end{aligned}
$$

$$
\begin{equation*}
V V^{\prime}=\left(\frac{G V^{\prime}}{G V}-\frac{G V}{G V^{\prime}}\right) \cdot G O \tag{28}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathrm{AL}^{2} \cdot \mathrm{AL}^{\prime 2} \cdot \mathrm{VV}^{\prime 2} & =\frac{3 a^{2} b^{2} c^{2}}{\mathrm{R}}\left(\mathrm{R}^{2}-\frac{a^{2}+b^{2}+c^{2}}{9}\right) \\
& =\left(\mathrm{AL}^{2}-\mathrm{AL}^{\prime 2}\right)^{2} \cdot \mathrm{GO}^{2}
\end{aligned}
$$

therefore

$$
\begin{aligned}
V V^{\prime} & =\frac{A L^{2}-A L^{\prime 2}}{A L \cdot G L^{\prime}} \cdot G O \\
& =\left(\frac{G V^{\prime}}{G V}-\frac{G V}{G V^{\prime}}\right) \cdot G O
\end{aligned}
$$

$$
\begin{align*}
& O V^{2}=2\left(G O^{2}+G V^{2}\right)-G O^{2} \cdot \frac{G V^{2}}{G V^{\prime 2}}  \tag{29}\\
& O V^{\prime 2}-2\left(G O^{2}+G V^{\prime 3}\right)-G O^{2} \cdot \frac{G V^{\prime 2}}{G V^{2}}
\end{align*}
$$

From the expression for $\mathrm{AL}^{2} . \mathrm{OV}^{2}$ in (13)
there may be obtained, by substitution and simplification,

$$
\begin{aligned}
\mathrm{OV}^{2} & =\mathrm{R}^{2}-\quad \frac{a b c}{3 \mathrm{R} \sqrt{3}}+\frac{\mathrm{R} \sqrt{3}}{3 a b c} \mathrm{AL}^{\prime 2} \cdot \mathrm{VV}^{\prime 2} \\
& =\mathrm{R}^{2}-\left(\mathrm{GV}^{\prime 2}-\mathrm{GV}^{2}\right)+\quad \frac{\mathrm{GV}^{2}}{\mathrm{GV}^{\prime 2}-\mathrm{GV}^{2}} \cdot \mathrm{VV}^{\prime 2} \\
& =\mathrm{R}^{2}+\mathrm{GV}^{2}-\mathrm{GV}^{\prime 2}+G O^{2} \cdot \frac{\mathrm{GV}^{\prime 2}-\mathrm{GV}^{2}}{\mathrm{GV}^{\prime 2}}
\end{aligned}
$$

which by (28) reduces to the required form
(30)* The area of the triangle $O V V^{\prime}$ is

$$
\frac{1}{\sqrt{3}} \cdot \frac{\left(b^{2}-c^{2}\right)\left(c^{2}-a^{2}\right)\left(a^{2}-b^{2}\right)}{\left(b^{2}-c^{2}\right)^{2}+\left(c^{2}-a^{2}\right)^{2}+\left(a^{2}-b^{2}\right)^{2}}
$$

The investigation of this is too long to be given here.
(31) $\dagger$ If $H$ be the orthocentre of $A B C$, and $Q$ be the mid-point of HG, then

$$
Q V=G O \cdot \frac{G V}{G V^{\prime}}, \quad Q V^{\prime}=G O \cdot \frac{G V^{\prime}}{G V}
$$

[^8]Figura 29
The points $H$ G $O$ are collinear, and $H G=2 G O$
therefore

$$
\mathbf{H Q}=\mathbf{G Q}=\mathbf{G O} .
$$

Now

$$
\begin{aligned}
& O V^{2}=2\left(G O^{2}+G V^{2}\right)-Q V^{2} \\
& O V^{\prime 2}=2\left(G O^{2}+G V^{\prime 2}\right)-Q V^{\prime 2}
\end{aligned}
$$

whence, by (29), the results follow
(32) The points $Q V V^{\prime}$ are collinear
and
$Q V . Q V^{\prime}=G O^{2}=G Q^{2}$
For $V^{\prime}=Q V^{\prime}-Q V$ by (28)
(33) The bisectors of the angles VGV VHV meet VV' at the same point

Since $\quad \mathbf{Q V}: \mathbf{Q G}=\mathbf{Q G}: \mathbf{Q V}^{\prime}$
therefore triangles VQG GQV' are similar ; therefore, if $\mathrm{G} n$ bisect $\angle \mathrm{VGV}^{\prime}$,

$$
\begin{aligned}
\angle \mathrm{QG} n & =\angle \mathrm{QGV}+\angle \mathrm{VG} n \\
& =\angle \mathrm{QV} \mathrm{G}^{\prime}+\angle \mathrm{V}^{\prime} \mathrm{G} n \\
& =\angle \mathrm{Q} n \mathrm{G}
\end{aligned}
$$

therefore

$$
\mathrm{Q} n=\mathrm{QG} .
$$

But since

$$
Q V: Q H=Q H: Q V^{\prime}
$$

therefore triangles VQH HQV' are similar.
Hence the bisector of $\angle \mathrm{VHV}^{\prime}$ will meet $\mathrm{VV}^{\prime}$ at a point $n$ such that $\mathrm{Q} n=\mathrm{QH}$.

$$
\begin{equation*}
\angle G V H+\angle G V^{\prime} H=180^{\circ} \tag{34}
\end{equation*}
$$

(35) If with the three points $H \quad V \quad V^{\prime}$ the parallelogram $H V H^{\prime} V^{\prime}$ be completed, then $O H^{\prime}=R$.

Denote the mid-point of QG or HO by $m^{\prime}$ and draw HH' the diagonal of the parallelogram meeting $V V^{\prime}$ in $m$.

Then $\quad \mathrm{OH}^{\prime 2}=4 m^{\prime} m^{2}$

$$
\begin{aligned}
& =2 G m^{2}+2 \mathbf{Q} m^{2}-\mathbf{Q} G^{2} \\
& =2 G m^{2}+2 V m^{2}+2(\mathbf{Q} m-V m)(Q m+V m)-\mathbf{Q G} \\
& =\mathbf{G} V^{2}+G V^{\prime 2}+2 \mathbf{Q V} \cdot \mathbf{Q} V^{\prime}-\mathbf{Q G} \mathbf{G}^{2} \\
& =\mathbf{G V}^{2}+G V^{\prime 2}+\mathbf{Q} G^{2} \\
& =\mathbf{G} V^{2}+G V^{\prime 2}+G O^{2}=\mathbf{R}^{2}
\end{aligned}
$$

therefore $\mathrm{H}^{\prime}$ lies on the circumcircle of ABC .
The position of $\mathbf{H}^{\prime}$ is further determined by

$$
\mathbf{G H}^{\prime}=2 \mathbf{Q} m=\mathbf{Q V}+Q V^{\prime}=G O \cdot\left(\frac{G V}{G V^{\prime}}+\frac{G V^{\prime}}{G V}\right)
$$

(36) If $G H^{\prime}$ be produced to meet the circle again in $H^{\prime \prime}$
then

$$
G H^{\prime \prime}=\frac{G V \cdot G V^{\prime}}{G O}
$$

For
therefore

$$
\begin{aligned}
\mathbf{G H} \cdot \mathbf{G H} \mathbf{H}^{\prime \prime} & =\mathbf{R}^{2}-\mathbf{G O} \mathbf{O}^{2} \\
& =\mathbf{G V ^ { 2 } + \mathbf { G } V ^ { \prime 2 }} \\
\mathbf{G H} \mathbf{H}^{\prime \prime} & =\frac{\mathbf{G} \mathbf{V}^{2}+\mathbf{G} V^{\prime 2}}{\mathbf{G H}} \\
& =\frac{\mathbf{G V} \cdot \mathbf{G} V^{\prime}}{\mathbf{G O}}
\end{aligned}
$$

(37)* If the squares of the sides of $A B C$ be in arithmetical progression, then $A V B V C V$ are in arithmetical progression

Denote AV BV CV by $x y z$; then

$$
\begin{align*}
& a^{2}=y^{2}+z^{2}-2 y z \cos 120^{\circ}=y^{2}+z^{2}+y z  \tag{1}\\
& b^{2}=z^{2}+x^{2}-2 z x \cos 120^{\circ}=z^{2}+x^{2}+z x  \tag{2}\\
& c^{2}=x^{2}+y^{2}-2 x y \cos 120^{\circ}=x^{2}+y^{2}+x y \tag{3}
\end{align*}
$$

Now since $a^{2}+c^{2}=2 b^{2}$, therefore

$$
\begin{gathered}
x^{3}+2 y^{2}+z^{2}+x y+y z=2\left(z^{2}+x^{2}+z x\right) \\
y^{2}+\frac{1}{2}(z+x) y-\frac{1}{2}(z+x)^{2}=0
\end{gathered}
$$

or
The two roots of this quadratic in $y$ are

$$
\frac{1}{2}(z+x) \text { and }-(z+x)
$$

[^9]
## 114

If the second be rejected, $y=\frac{1}{2}(z+x)$
and $x y z$ are in arithmetical progression.
The second root $-(z+x)$ is rejected because it is inconsistent with (1) and (3) unless the triangle be equilateral.
For, from (1) and (3)

$$
(z-x)(x+y+z)=a^{2}-c^{2}
$$

Now if

$$
\begin{aligned}
& y=-(z+x) \quad \text { or } \quad x+y+z=0, \\
& a=c \quad \text { and therefore } \quad a=b=c .
\end{aligned}
$$

When however the triangle is equilateral, not only is $y=\frac{1}{2}(z+x)$ admissible, but likewise $x+y+z=0$; only in the latter case it is not the three lines $x y z$ that make equal angles with each other, but two of them and the third produced. In fact, the condition

$$
x+y+z=0
$$

expresses the well-known theorem :
If lines be drawn from the vertices of an equilateral triangle to any point in the circumference of the circumcircle, the sum of two of these is equal to the third.
(38) Triangles $A B C$ RST are homologous; and so are triangles $A B C \quad R^{\prime} S^{\prime} T^{\prime}$.
(39) If the circles VBC VCA VAB be described and through $A B C$ perpendiculars be drawn to VA VB VC, these perpendiculars will form a triangle DEF whose vertices will be situated respectively on the three circles.

Figure 30
(40) Triangles DEF RST are similar and similarly situated, and $V$ is their centre of similitude.

For $\quad \angle \mathrm{VBU}=90^{\circ}$;
therefore VU is a diameter of the circle LBC, and consequently passes through $R$.
(41) Triangle $D E F=$ four times $R S T$.
(42) $A L B M C N$ are equal to the perpendiculars of the triangle DEF

For $\quad \angle \mathrm{VLD}=90^{\circ}=\angle \mathrm{VAE}$;
therefore DL is parallel to EF.
(43)* The point $V$ is such that the sum of its distances from the vertices $A B C$ is a minimum.

Take any point $P$ inside DEF, and let $P_{1} P_{2} P_{3}$ be its projections on the sides of DEF.

$$
\begin{array}{ll}
\text { Then } & P P_{1}+P P_{2}+P P_{3}=A L=V A+V B+V C . \\
\text { But } & P P_{1}+P P_{2}+P P_{3}<P A+P B+P C
\end{array}
$$

(44) Triangle DEF is the maximum equilateral triangle that can be circumscribed about ABC.

The problem
About a given triangle to circumscribe the maximum equilateral triangle
was proposed by Thomas Moss in the Ladies' Diary for 1755 under the form

In the three sides of an equiangular field stand three trees at the distances of 10,12 , and 16 chains from one another ; to find the content of the field, it being the greatest the data will admit of.

The solution given next year was

## Figure 30

On $\mathrm{AB}, \mathrm{AC}$ describe segments of circles to contain angles of $60^{\circ}$. Join their centres T S and through A draw EF parallel to ST. Then EC FB will meet at D and form the required triangle DEF.

In Gergonne's Annales de Mathématiques I. 384 (1811) there were proposed the two problems:

In any given triangle to inscribe an equilateral triangle which shall be the smallest possible

[^10]About any given triangle to circumscribe an equilateral triangle which shall be the greatest possible

It was also suggested that instead of supposing the inscribed and circumscribed triangles to be equilateral they may be supposed similar to given triangles. In this more general form the problems were solved by Rochat, Vecten and others in Vol. II. pp. 88-93 (1811 and 1812)

Their solutions were preceded by the following lemma.
Two triangles $t$ and $t^{\prime}$ are given in species, and two other triangles T and $\mathrm{T}^{\prime}$ respectively similar to them are inscribed the one in the other, $T^{\prime}$ in $T$ for example. If $T^{\prime}$ is the smallest of the triangles similar to $t^{\prime}$ which it is possible to inscribe in $T$, the triangle $T$ will be the greatest of the triangles similar to $t$ which it is possible to circumscribe about $\mathrm{T}^{\prime}$, and conversely.

Figure 31
Let ABC be a triangle similar to $t$, and let DEF be the smallest of all the triangles similar to $t^{\prime}$ which it is possible to inscribe in it. If $A B C$ is not the greatest of the triangles similar to $t$ which can be circumscribed about DEF, let $A^{\prime} B^{\prime} C^{\prime}$ greater than $A B C$ be such a triangle. Divide the sides of $A B C$ at $D^{\prime} E^{\prime} F^{\prime}$ as the sides of $A^{\prime} B^{\prime} C^{\prime}$ are divided at DEE and form the triangle $D^{\prime} E^{\prime} F^{\prime}$.
Then

$$
\mathrm{ABC}: \mathrm{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}=\mathrm{D}^{\prime} \mathbf{E}^{\prime} \mathrm{F}^{\prime}: \text { DEF. }
$$

If therefore $A B C$ be less than $A^{\prime} B^{\prime} C^{\prime}$, the triangle $D^{\prime} E^{\prime} F^{\prime}$ will be less than DEF, which is contrary to the hypothesis.

To prove the converse.
Let ABC be the greatest of the triangles similar to $t$ which it is possible to circumscribe about DEF. If DEF is not the smallest of all the triangles similar to $t^{\prime}$ which it is possible to inscribe in ABC , let $\mathrm{D}^{\prime} \mathbf{E}^{\prime} \mathrm{F}^{\prime}$ smaller than DEF be such a triangle. Through D E F let there be drawn three straight lines $\mathbf{B}^{\prime} \mathbf{C}^{\prime} \mathbf{C}^{\prime} \mathbf{A}^{\prime} \mathbf{A}^{\prime} \mathbf{B}^{\prime}$ making with the sides of DEF the same angles that BC CA AB make with their homologues in $D^{\prime} E^{\prime} F^{\prime}$.
Then $\quad D E F: D^{\prime} E^{\prime} F^{\prime}=A^{\prime} B^{\prime} C^{\prime}: A B C$
If therefore $D^{\prime} E^{\prime} F^{\prime}$ be less than DEF, the triangle $A B C$ will be less than $A^{\prime} B^{\prime} C^{\prime}$, which is contrary to the hypothesis.

Hence the following solutions:
About $A B C$ to circumscribe a triangle similar to def and which shall be the greatest possible.

Figure 32
On CA CB describe externally segments CEA CDB containing angles equal to $e d$; and let the arcs of these segments cut each other at P. Through C draw DE perpendicular to PC.
If DB EA meet at F, then DEF is the required triangle.
In $A B C$ to inscribe a triangle similar to def, and which shall be the smallest possible.

## Fiaure 33

About the triangle def circumscribe a triangle abc similar to ABC and the greatest possible.
Cut the sides of ABC at D E F in the same manner as those of $a b c$ are at $d \in f$; then DEF is the required triangle.

Rochat remarks that each of these problems would in general admit of six solutions, unless it is specified beforehand to which sides of the triangle given in species the sides of the circumscribed triangle are to correspond, or to which angles of the triangle given in species the angles of the inscribed triangle are to correspond.

The two preceding problems are discussed in Lhuilier's Elémens danalyse geométrique, pp. 252-5 (1809); and it may be interesting to compare the 26th lemma of the first book of Newton's Philosophiae Naturalis Principia Mathematica (2nd ed., 1713), which is

Trianguli specie et magnitudine dati tres angulos ad rectas totidem positions datas, quae non sunt omnes parallelae, singulos ad singulas ponere.

Newton adds as a corollary
Hinc recta duci potest cujus partes longitudine datae rectis tribus positione datis interjacebunt.

The preceding pages contain the early history of the isogonic points, as well as certain properties of them which are not well known either in this country or abroad. Recent researches on the
triangle have brought several of these properties to light again, and have added a considerable number of new ones. Had time and space permitted these latter might have been stated if not proved. Room can be found only for the following references.

Mathesis, II. 187-188 (1882); VI. 211-213 (1886);
VII. 208-220 (1887) ; IX. 188-189 (1889) ;
XV. 153-155 (1895)

The article in vol. VII. is by Mr W. S. M‘Cay, and contains a note on p. 216 by Prof. Neuberg; that in vol. IX. is by Prof. H. Van Aubel ; that in vol. XV. is by Mr H. Mandart.

Mr De Longchamps' Journal de Mathématiques Elémentaires,
3rd series, I. 232-236 (1887); III. 99-102, 123-126, 152-154, 180-182, 198-201, 242-245 (1889)
4th series, I. 179-183, 230-233, 248-258, 272-278 (1892) II. 3-7, 25-29, 49-54, 76-79 (1893)

The article in the volume for 1887 is due to Messrs J. Koehler and J. Chapron; those in the volumes for 1889 and 1892 are due to Mr A. Boutin ; those in the volume for 1893 to Mr Bernès

Mr J. M. J. Sachse's Der fünfte merkwürdige Punkt im Dreieck (Coblenz, 1875)

Dr Heinrich Lieber's Ueber die isogonischen und isodynamischen Punkte des Dreiecks (Programm der Friedrich-Wilhelms-Schule zu Stettin, 1896)

Hoffmann's Zeitschrift für mathematischen und naturwissenschaftlichen Unterricht, XXVIII. 266-267 (1897)


[^0]:    * T. S. Davies in the Gentleman's Diary for 1830, p. 36.

[^1]:    *In the Appendix to his treatise De Maximis et Minimis, pp. 144, 150 (1659).

[^2]:    $\dagger$ See Nova Acta Academiae . . . Petropolitanae XI. 235-8 (1798)

[^3]:    * W. S. B. Woolhouse in the Lady's and Gentleman's Diary for 1865, p. 81. His proof of (l) is different from that in the text.
    (1) and (2) are said to be given by Heinen, Ueber Systeme von Kräften (1834).
    $\dagger$ John Turnbull in the Lady's and Gentleman's Diary for 1865, p. 78.
    $\ddagger$ Rev. William Mason and Thomas Dobson in the Lady's and Gentleman's Diary for 1865, pp. 76, 78.

[^4]:    *W. H. Levy in the Lady's and Gentleman's Diary for 1855, p. 71
    $\dagger$ W. S. B. Woolhouse in the Lady's and Gentleman's Diary for 1865, p. 81.
    $\ddagger$ (11)-(14). Rev. William Mason in the Lady's and Gentleman's Diary for 1865, pp. 74, 75.

[^5]:    * (15)-(17). W. S. B. Woolhouse in the Lady's and Gentleman's Diary for 1865, pp. 84, 82. See the reference to Fuss on p. 102.
    $\dagger$ Dr Rutherford in the Ladies' Diary for 1825, p. 47. Probably, however, the theorem dates farther back.
    $\ddagger$ Prof. Uhlich ascribes this method to Kunze.

[^6]:    * This is substantially the mode of proof given in the Ladies' Diary for 1826, p. 38.
    † Dr John Casey. See his Euclid, p. 264 (2nd ed., 1884)
    $\ddagger$ Ascribed by Professor Uhlich to Féaux, Arnsberg Programm, p. 4 (1873).

[^7]:    *Stated by Reuschle in Schlömileh's Zeitschrift, xi. 482 (1866).
    $\dagger$ (23)-(29) W. S. B. Woolhouse in the Lady's and Gentleman's Diary for 1865, pp. 86, 83, 84 .

[^8]:    * Mr Stephen Watson in the Lady's and Gentleman's Diary for 1865, p. 78
    + (31-(36). W. S. B. Woolhouse in the Lady's and Gentleman's Diary for 1865, pp. 84, 85

[^9]:    *Thomas Weddle in the Mathematician III. 111 (1848). The solution is taken from p. 165.

[^10]:    *The proof given here will be found in Steiner's Gesammelte Werke II. 729 (1882)

