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Centroid of a quadrilateral

John Boris Miller∗

Abstract

We give a simple rule-and-compasses construction for locating the centroid
of a plane quadrilateral lamina, and we make some deductions about linear
dependence in the plane.

Let Ω = PQRS be a convex quadrilateral, and Ω* the lamina Ω ∪ inside (Ω); its
area A is of course the sum of areas of two triangles. We introduce the notation
AP for the area of the triangle having vertex P and the opposite diagonal as its
opposite side, that is �PQS; so that

A = AP + AR = AQ + AS. (1)

Let an origin O be taken anywhere in the plane not collinear with any two of
the vertices, and let P,Q, . . . denote the position vectors of the points P, Q, . . .
from O. Although the four vectors P,Q,R,S are linearly dependent, they form a
convenient spanning set for the plane; any linear combination of them denotes a
unique point in the plane, even though no point has a unique such representation.
Consider the points (see Figure 1) and their vectors

M = 1
2 (P + R), N = 1

2 (Q + S),

X = 1
4 (P + Q + R + S), W = (APP + AQQ + ARR + ASS)/2A. (2)
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Figure 1.

Received 29 April 2009; accepted for publication 2 November 2009
∗School of Mathematics and Statistics, Monash University, Clayton, VIC 3168 (retired).
Home address: 7 Inglis Road, Berwick, VIC 3806. E-mail: john.miller@sci.monash.edu.au

mailto: john.miller@sci.monash.edu.au
Published in the Gazette (2010) of the Australian Mathematical Society.



102 Centroid of a quadrilateral

The points M and N are the midpoints of the diagonals of Ω; X is the unweighted
mean of the vertices, both of Ω and of Λ (the median parallelogram of Ω), and
is also the point of intersection of the diagonals of Λ. (Λ is defined to be the
parallelogram FGHI whose vertices are the midpoints of the sides of Ω, taken in
order; see [1].) We define Y and Z presently.

The centroid of the lamina Ω* can be calculated as the mean of the centroids of
the two triangles making up the quadrilateral, say �PRQ and �PRS, weighted
according to the areas of these triangles. The centroid of a triangle is the common
point of its medians, so the centroid of �PRQ is 1

3 (P + Q + R) = (2M + Q)/3;
thus the centroid of Ω is

Z = (AQ(P + Q + R)/3 + AS(P + R + S)/3)/(AQ + AS)

= 2M/3 + (AQQ + ASS)/3A. (3)

Similarly, by regarding Ω as made up of �PQS and �RQS, we get

Z = 2N/3 + (APP + ARR)/3A. (4)

Averaging (3) and (4) gives

Z = 1
3 (M + N) + 1

3W = 1
3 (2X + W). (5)

Lemma 1. ARP+APR = ASQ+AQS = AY, where Y is the point of intersection
of the diagonals of Ω.

Proof. Let Y be the point of intersection of PR and QS. Clearly Y = (|YR|P +
|YP|R)/|PR| = (|�RQS|P + |�PQS|R)/A, since the areas of these two triangles
on the same base QS are to one another as their vertical heights, and hence as the
lengths |YR|, |YP|. That is, AY = ARP + APR. The second equation is proved
in the same way. �

From these formulae we easily deduce the equality of the vectors
−−→
WM and

−→
NY,

proving that Ψ := MYNW is a parallelogram. Also X is the midpoint of WY.
Then (5) gives the location of the centroid on XW. We have established the fol-
lowing Construction.

Construction. To find the centroid Z of the quadrilateral lamina Ω*:

(1) draw the diagonals of Ω and locate their point of intersection Y and their
midpoints M, N;

(2) find the midpoint X of MN;
(3) find W, as the fourth vertex of the parallelogram MYNW;

then Z is the point of trisection of XW which is the closer to X.

All these steps are effected by simple use of straight-edge and compasses.

The parallelogram Ψ has sides parallel to those of Λ. Also Ψ and Λ have the
same centre, but although Ψ is symmetrically placed inside Λ, it is in general not
proportional to Λ.
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Dart. The above discussion deals with the case when Ω is convex. Suppose instead
that Ω is a dart, with its concavity at S and point at Q. See Figure 2. There are
some changes to the signs of terms, but the theory is similar. Instead of (1) we
have A = AP + AR = AQ − AS, and Y is the point of intersection of QS produced
and PR. Thus in place of Lemma 1 we have ARP + APR = −ASQ + AQS = AY,
and the new definition of W is

W = (APP + AQQ + ARR − ASS)/2A.

With these changes (5) holds, and the same construction applies.

Q

W

I

P Y M
H

G

FWN

X

S R R

G

S
M

N P

I

Q
U

H

F
X

Y

Dart Zigzag

Figure 2.

Zigzag. There is now a new point U, the intersection of two opposite sides, say PS
and QR. The natural adaption of the preceding theory takes A to be the difference
of the areas of the two components of inside(Ω). As before, AP = area(�PQS), etc.
Assume without loss of generality that RP produced meets SQ produced in Y. Then
A = AR − AP = AS − AQ, and now

AY = ARP − APR = −ASQ + AQS,

W = (−APP − AQQ + ARR + ASS)/2A.

With these changes (5) holds, and the same construction applies.

Linear dependence in R2

There must exist two independent linear relations among the four vectors P,Q,
R,S. Confining attention to the convex case, we get one relation from Lemma 1,
namely

ARP − ASQ + APR − AQS = 0, (6)

in which moreover the coefficients are all independent of the choice of origin (from
their definition as areas), and also their sum is zero. One might hope that a second
dependence relation could be found by using one of the zigzags PRQS or PQSR
and their equivalent forms of (6), but this leads back to (6).

Let us call a nontrivial linear dependence relation zero-sum when the sum of the
coefficients is zero; (6) is one such. We can easily prove Lemma 2.



104 Centroid of a quadrilateral

Lemma 2. Given Ω = PQRS, the following properties are equivalent, for any
tuple (α, β, γ, δ) of reals:

(a) There exists an origin O such that αP + βQ + γR + δS = 0 holds as a
zero-sum dependence relation on the position vectors from O, that is, where
P =

−→
OP, . . . .

(b) For every choice of origin O′ and position vectors P′ =
−−→
O′P, . . . , the linear

dependence relation αP′ + βQ′ + γR′ + δS′ = 0′ holds.

Thus the property of being a zero-sum relation is equivalent to the relation being
independent of the choice of origin in the plane. Furthermore, we have Lemma 3.

Lemma 3. If there holds a second zero-sum linear dependence relation for Ω not
equivalent to (6), then every linear dependence relation for Ω is zero-sum.

Proof. Any third linear dependence relation must be a linear combination of the
given two, and therefore zero-sum. �

Take the origin O to be the centroid; then Z = 0 and (5) and (2) give

(A + AP)P + (A + AQ)Q + (A + AR)R + (A + AS)S = 0.

This linear relation is certainly not zero-sum. By Lemma 3 we deduce Theorem 1.

Theorem 1. Relation (6) is (to within a constant multiple) the sole zero-sum
linear dependence relation for the convex quadrilateral Ω.

Similar results hold for darts and zigzags. The theorem describes a general prop-
erty of four position vectors in the plane, no two of them linearly dependent.
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