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e.g. a torus. There is still a shortest and a longest distance from P to
a torus C, both segments being perpendicular to C. In addition we
find extrema of different types representing maxima of minima or minima
of maxima. To find them, we draw on the torus a closed “meridian”
circle L, as in Figure 195, and we seek on L the point @ nearest to P,
Then we try to move L so that the distance PQ becomes: a) a minimum.
This @ is simply the point on C nearest to P. b) a maximum. This
yields another stationary point. We could just as well seek on L the
point farthest from P, and then find L such that this maximum distance
is: ¢) a maximum, which will be attained at the point on C farthest
from P. d) a minimum. Thus we obtain four different stationary
values of the distance.

Fig. 195

* Ezercise; Repeat the reasoning with the other type L’ of closed curve on C
that cannot be contracted to a point, as in Figure 196.

§4. SCHWARZ’S TRIANGLE PROBLEM

1. Schwarz’s Proof

Hermann Amandus Schwarz (1843-1921) was a distinguished mathe-
matician of the University of Berlin and one of the great contributors
to modern function theory and analysis. He did not disdain to write
on elementary subjects, and one of his papers treats the following
problem: Given an acute-angled triangle, to inscribe in it another
triangle with the least possible perimeter. (By an inscribed triangle
we mean one with a vertex on each side of the original triangle.) We
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shall see that there is &xactly one such triangle, and that its vertices
are the foot-points of the altitudes of the given triangle. We shall call
this triangle the altitude triangle.
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Schwarz proved the minimum property of the altitude triangle by
the method of reflection, with the help of the following theorem of
elementary geometry (see Fig. 197): At each vertex, P, @, R, the two
sides of the altitude triangle make equal angles with the side of the orig-
inal triangle; this angle is equal to the angle at the opposite vertex of
the original triangle. For example, the angles ARQ and BRP are both
equal to angle C, etc.

To prove this preliminary theorem, we note that OPBR is a quad-
rilateral that can be inscribed in a circle, since X OPB and X ORB are
right angles. Consequently, X PBO = X PRO, since they subtend the
same arc PO in the circumscribed circle. Now X PBO is complementary
to X.C, since CBQ is a right triangle, and X PRO is complementary to
X PRB. Therefore the latter is equal to X.C. In the same way, using
the quadrilateral QORA, we see that X QRA = X.C, etc.
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Fig. 197. Altitude triangle of ABC, showing equal anglea.

This result enables us to state the following reflection property of
the altitude triangle: Since, for example X AQR = X CQP, the reflec-
tion of RQ in the side AC is the continuation of I’Q, and vice versa;
similarly for the other sides.

We shall now prove the minimum property of the altitude tri-
angle. In the triangle A BC consider, together with the altitude triangle,
any other inscribed triangle, UVH. Reflect the whole figure first in the
side AC of ABC, then reflect the resulting triangle in its side AB then
in BC then again in AC, and finally in AB. In this way we obtain
altogether six congruent triangles, each with the altitude triangle and
the other one inscribed. The side BC of the last triangle is parallel to
the original side BC. For in the first reflection, BC is rotated clockwise
through an angle 2C, then through 2B clockwise; in the third reflection
it is not affected, in the fourth it rotates through 2C counterclockwise,
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Fig. 198. Schwara’s proof that altitude triangle has least perimeter,

and in the fifth through 2B counterclockwise. Thus the total angle
through which it has turned is zcro.

Due to the reflection property of the altitude triangle, the straight
line segment PP’ is equal to twice the perimeter of the altitude triangle;
for PP’ is composed of six pieces that are, in turn, equal to the first,
second, and third side of the triangle, each side occurring twice. Simi-
larly, the broken line from U to U’ is twice the perimeter of the other
inscribed triangle. This line is not shorter than the straight line seg-
ment UU’. Since UU’ is parallel to PP’, the broken line from U to U’
is not shorter than PP’, and therefore the perimeter of the altitude
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triangle is the shortest possible for any inscribed triangle, as was to be
proved. Thus we have at the same time shown that there is a minimum
and that it is given by the altitude triangle. That there is no other
triangle with perimeter equal to that of the altitude triangle will be
seen presently.

2. Another Proof

Perhaps the simplest solution of Schwarz’s problem is the following,
based on the theoremn proved earlier in this chapter that the sum of
the distances from two points P and @ to a line L is least at that point
R of L where PR and QR make the same angle with L, provided that
P and @ lic on the same side of L and neither lies on L. Assume that
the triangle PQR inscribed in the triangle A BC solves the minimum
problem. Then R must be the point on the side AB where p + ¢q is a
minimum, and therefore the angles ARQ and BRP must be equal;
mmuuuy, q.:ugu = 4.»!11', q.oru = Z\.CPQ Thus the minimum
triangle, if it exists, must have the equal-angle property used in
Schwarz’s proof. It remains to be shown that the only triangle with
this property is the altitude triangle. Moreover, since in the theorem

on which this proof is based it is assumed that P and @ do not lie on AB,
the proof does not hold in case one of the points P, @, R is a vertex of
the original triangle (in which case the minimum triangle would de-
generate into twice the corresponding altitude); in order to complete the
proof we must show that the perimeter of the altitude triangle is shorter
than twice any altitude.

Fig. 199, Fig. 200.

To dispose of the first point, we observe that if an inscribed triangle
has the equal-angle property mentioned above, the angles at P, Q, and
R must be equal to X A, X B, and X C respectively. For assume, say,
that X ARQ = X C + 4. Then, since the sum of the angles of a tri-
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angle is 180°, the angle at @ must be B — §, and at P, A — 3§, in order
that the triangles ARQ and BRP may have the sum of their angles
equal to 180°. But then the sum of the angles of the triangle CPQ is
A—86+B— 46+ C = 180° — 26, on the other hand, this sum must be
180°. Therefore & is equal to zero. We have already seen that the
altitude triangle has this equal-angle property. Any other triangle
with this property would have its sides parallel to the corresponding
sides of the altitude triangle; in other words, it would have to be similar
to it and oriented in the same way. The reader may show that no other
such triangle can be inscribed in the given triangle (see Fig. 200).
Finally, we shall show that the perimeter of the altitude triangle
is less than twice any altitude, provided the angles of the original
triangle are all acute. We produce the sides QP and QR and draw the

Fig. 201,

perpendiculars from B to QP, QR, and PR, thus obtaining the points
L, M,and N. Then QL and @M are the projections of the altitude @B
on the lines QP and QR respectively. Consequently, QL + QM < 2QB.
Now QL + QM equals p, the perimeter of the altitude triangle. For
triangles MRB and NRB are congruent, since angles MRB and NRB
are equal, and the angles at M and N are right angles. Hence
RM = RN ; therefore QM = QR + RN. In the same way, we see that
PN = PL,so that QL = QP + PN. We therefore have QL + QM =
QP + QR + PN + NR = QP + QR + PR = p. But we have
shown that 2QB > QL + QM. Therefore p is less than twice the
altitude QB; by exactly the same argument, p is less than twice any
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altitude, as was to be proved. The minimum property of the altitude
triangle is thus completely proved.

Incidentally, the preceding construction permits the direct calculation of p.
We know that the angles PQC and RQA are equal to B, and therefore PQB =
RQB = 90° — B, so that cos (PQB) = sin B. Therefore, by elementary trigo-
nometry, QM = QL = QB sin B, and p = 2QB sin B. In the same way, it can be
shown that p = 2PA sin A = 2RC sin C. From trigonometry, we know that
RC = asin B = bsin A, etc., whichgivesp = 2asin BsinC = 2b sin C sin 4 = 2¢
sin 4 sin B. Finally, since a = 2rsin A, b = 2r8in B, ¢ = 2r8in C, where ris the
radius of the circumscribed circle, we obtain the symmetrical expression, p =
4r 8in A sin B sin .

3. Obtuse Triangles

In both of the foregoing proofs it has been assumed that the angles
A, B, and C are all acute. If, say, C is obtuse, as in Figure 202, the
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Fig. 203. Altitude triangle for obtuse triangle.

points P and @ will lie outside the triangle. Therefore the altitude
triangle can no longer, strictly speaking, be said to be inscribed in the
triangle, unless by an inscribed triangle we merely mean one whose
vertices are on the sides or on the extensions of the sides of the original
triangle. At any rate, the altitude triangle does not now give the
minimum perimeter, for PR > CR and QR > CR; hence p = PR +
QR + PQ > 2CR. Since the reasoning in the first part of the last
proof showed that the minimum perimeter, if not given by the altitude
triangle, must be twice an altitude, we conclude that for obtuse triangles
the “inscribed triangle” of smallest perimeter is the shortest altitude
counted twice, although this is not properly a triangle. Still, one can
find a proper triangle whose perimeter differs from twice the altitude by
as little as we please. For the boundary case, the right triangle, the
two solutions—twice the shortest altitude, and the altitude triangle—
coincide.

The interesting question whether the altitude triangle has any sort
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of extremum property for obtuse triangles cannot be discussed here.

operty t

Only this much may be stated: the altitude t 1angle gives, not a mini-
mum for the sum of the sides, p + q + r, but a stationary value of
minimax type for the expression p + q — r, where r denotes the side

of the inscribed triangle opposite the obtuse angle.

4. Triangles Formed by Light Rays

If the triangle A BC represents a chamber with reflecting walls, then
the altitude triangle is the only triangular light path possible in the
chamber. Other closed light paths in form of polygons are not excluded,
as Figure 203 shows, but the altitude triangle is the only such polygon
with three sides.

—

Fig. 203. Cloeed light path in a triangular mirror.

We may generalize this problem by asking for the possible “light
triangles” in an arbitrary domain bounded by one or even several
smooth curves; i.e. we ask for triangles with their vertices somewhere
on the boundary curves and such that each two adjacent edges form
the same angle with the curve. As we have seen in §1, the equality of
angles is a condition for maximum as well as minimum total length of
the two edges, so that we may, according to circumstances, find different
types of light triangles. For example, if we consider the interior of a
single smooth curve C, then the inscribed triangle of maximum length
must be a light triangle. Or we may consider (as suggested to the
authors by Marston Morse) the exterior of three smooth closed curves.
A light triangle A BC may be characterized by the fact that its length
has a stationary value; this value may be a minimum with respect to all
three points 4, B, C, it may be a minimum with respect to any of the
combinations such as A and B and a maximum with respect to the third



