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"The fascination of mathematics is fundamentally the same as the fascination of exploration

except that the discoveries are made in the realm of ideas rather than in physical space. No

doubt the pleasure is greatest when an idea is clarified and isolated after a struggle, but most

people have sufficient experience, if only in attempting to solve Christmas puzzles, to enable

them to understand the exuberance with which Pythagoras and Archimedes are said to have

celebrated their discoveries. It is not possible for our pupils to rediscover the whole of

mathematics for themselves, or even those portions of it which seem to the greatest relevance

today, but fortunately the pleasure seems to be experienced under guided discovery. It is

important that the classroom activities should be carried on with a certain degree of

expectancy; new ideas, fresh discoveries, deepened interest are just round the corner waiting

to burst in at any moment."    - Bailey et al (1974: 148)

How is new mathematics discovered or created? Where does this theorem or that theory

come from? How was it arrived at? What stimulated its conjecture or development?

These are burning questions that are seldom adequately answered for our pupils and students.

Traditionally, the teacher just announces a theorem like a magician pulling a rabbit from a

hat, leaving pupils (subconsciously) wondering where it came from or how it could have

been discovered, and therefore adding to the unsatisfactory mystification of mathematics.

The arrival of software like Geometer's Sketchpad provides an incredible dynamic tool for

exploring geometry, and facilitating conjecturing. Basic explorations of triangles,

quadrilaterals, circles, and other geometric figures are a breeze with Sketchpad. Using

Sketchpad gives pupils or students the power to explore actively, without the mechanical

restraints of pencil and paper, compass, and straightedge. It allows your pupils or students to

dynamically transform their figures with the mouse, while preserving the geometric

relationships of their constructions. They'll be able to examine an entire set of similar cases in

a matter of seconds, leading them naturally to generalizations. Sketchpad therefore

encourages a process of discovery where pupils or students first visualise and analyze a

problem, and make conjectures before attempting a proof.
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Although loci are no longer part of our school syllabus, the availability of dynamic geometry

software with locus tracing facilities such as Sketchpad, certainly makes its reconsideration a

strong possibility. For example, the conics (circle, parabola, ellipse and hyperbola) can be

beautifully illustrated as loci (ie. the classical Greek treatment), from which the standard

equations can then later be derived. Such a historical approach would certainly be very much

in line with the learning outcomes of the OBE approach. Many real world problems also

involve loci which can easily be modelled with Sketchpad.

What follows below are three examples of exploring loci with Sketchpad.

Explore dynamically by downloading a FREE DEMO of SKETCHPAD from:

http://www.keypress.com/sketchpad/sketchdemo.html                                                                                        

Example 1

The ancient Greeks carried out intensive investigations on loci. For example, the circle was

seen to be the locus (the set of points) such that each point on the locus was equidistant from

a fixed point (the center). Similarly, the investigation of loci with the respective properties

that each point on the locus is equidistant to two fixed points or to two fixed lines,

respectively give a perpendicular bisector, and an angle bisector.

It is also natural to ask: What is the locus (the set  of points) equidistant from a fixed point

and a fixed line?

F
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B

Figure 1

Consider Figure 1 which shows a fixed point F and a fixed straight line, with A an arbitrary

point A on the line. All points equidistant from F and A lie on the perpendicular bisector of

FA; so the desired point of the locus must lie somewhere on this perpendicular bisector.

Since the distance from any point on the locus to the line is the perpendicular distance, it

follows that the desired point B can be obtained by constructing the perpendicular at A to

intersect the perpendicular bisector.Sketchpad allows us to dynamically investigate the path

of this point B as A is move along the line. For example, select point B and choose Trace

Locus from the Display menu. As A is dragged along the line we obtain Figure 2 which is the

desired curve.

http://www.keypress.com/sketchpad/sketchdemo.html


Paper presented at 4th Congress of AMESA, Jul ‘98 and published in Pythagoras, 46/47, Dec ’98, 71-73.

F

A

B

Figure 2

One of the advantages of Sketchpad is of course its dynamic nature and one could now also

examine the effect of dragging F further away or nearer to the line. This curve is of course

the well-known parabola where F is called the focus and the line the directrix. Can we

determine an algebraic equation for this curve?
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(0; p)

(x; y)

(0; 0)

(x; -p)

Figure 3
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Suppose as shown in Figure 3 the coordinates of the vertex of the parabola are (0; 0) and that

of the focus F (0; p). Since the vertex is halfway between the directrix and the focus, it

follows that the coordinates of point A  are (x; -p). Since FB = AB we have:
(x − 0)2 + (y − p)2 = (y + p)2

x2 + y2 − 2 py + p2 = y2 + 2 py + p2

y =
x2

4 p

This is clearly the standard equation of a parabola of the form y = ax2 . One of advantages of

Sketchpad is that it encourages the asking of "what-if?" questions because of the ease by

which such questions can be investigated. For example, what is the locus of the midpoint C

of BX? As shown in Figure 3, this locus appears to be also a parabola. Can you provide an

explaination why it must be a parabola, or why it is not? If a parabola, will the locus of any

point on the perpendicular bisector dividing BX in a fixed ratio (internally or externally), be a

parabola? These questions are however left to the reader to investigate.
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Figure 4

The hyperbola and ellipse can similarly be explored as loci with Sketchpad (compare Scher,

1995).

Example 2

Consider the following interesting problem, namely:

"Points M and N lie on sides AC and BC of triangle ABC with AM = BN. What is the locus

of the midpoint P of MN as M and N vary?"
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For example, a dynamic configuration to visually illustrate this result can easily be obtained

by constructing, firstly, a line through A and choosing M as an arbitrary point on that line,

and secondly, a parallelogram MABX as illustrated in Figure 5 to ensure that AM=BX. Then

by constructing a circle with B as centre and BX as radius, and choosing any point N on the

circle B, we ensure the equality of AM and BN. Finally, we construct a line BN to intersect

line AM in C, and P as the midpoint of MN. By now choosing the Trace locus facility and

selecting P, the locus of P is traced out as M is moved back and forth along line AC (see

Figure 5). One can now also clearly see that this locus is parallel to the angle bisector of ∠C .
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Figure 5
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Figure 6

The result can be proved as follows. Set ∆ABC  in a coordinate system with A at (0, 0), B at

(1, 0) and C in the first quadrant as shown in Figure 6. Suppose AM=BN=t. Then M has

coordinates (  t cos A,  t sin A ), N has coordinates (  1− t cos B,  t sin B ). Since P(x, y) is the

midpoint of MN, we have:

(1)   x = 1
2 (t cos A +1− t cos B)

(2)   y = 1
2 (t sin A + sin B)

From (2), we obtain 
  
t =

2y

sin A + sin B
 and substituting in (1):
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x = 1
2

+ y
cos A − cos B
sin A + sin B

 
 

 
 

or  y =
sin  A +sin B

cos A - cosB
 
 

 
 
(x − 1

2 )

This shows that the locus of P is a straight line. Using two trigonometric identities (which are

not in the school syllabus, but should be better known) we have:

  

sin A + sin B

cos A − cosB
=

2sin A+ B
2 cos B− A

2

2cos A + B
2 sin B− A

2

= cot
B − A

2

= tan 90°− B− A
2[ ]

= tan 90°− (180°− A− C )− A
2[ ]

= tan A + C
2[ ]

Now   A + C
2  is the angle at which the internal bisector of angle C cuts AB (see Figure 6).

Hence the straight line locus is parallel to the internal bisector of angle C.

One could now also explore some different variations on the original Sharp problem by

asking a few "what-if?" questions which will be left to the reader for further exploration (see

De Villiers, 1996).

An obvious "what-if?" question is: What happens if P is not the midpoint of MN, but divides

MN in the ratio p:q, i.e. so that MP
PN = p

q ? Will the locus of P still be a straight line

parallel to the angle bisector of ∠C ?

Another "what-if?" question is: What happens if AM≠BN, but in a constant ratio r:s to each
other, i.e. AM

BN = r
s ? Will the locus still be a straight line parallel to the angle bisector of

∠C ?

The dynamic construction also suggests the following "what-if?" question (with regard to the

quadrilateral AMNB): What happens to the locus of P if N is moved around the

circumference of the circle with centre B and radius BN (=BX)?

Example 3

Consider the following problem:

"What is the locus of the orthocentre of a triangle ABC if B and C are fixed and A is moved

along the circumference of the (fixed) circumcircle of triangle ABC?"
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Investigating the problem on Sketchpad as shown in Figure 7, reveals that the locus is a circle

congruent to the circumcircle of triangle ABC. Its proof is left as a challenge to the reader.

Hint: 1. Consult De Villiers, 1996b & Pillay, 1997 for a helpful, related result.

2. See No. 3 in http://mzone.mweb.co.za/residents/profmd/spsol00.pdf                                                                                                       
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Figure 7

Notes:

(1) Geometer's Sketchpad and additional materials are available from Dynamic Learning,

8 Cameron Rd, Sarnia (Pinetown) 3615 and runs on IBM (386 upwards, 4MB RAM,

Windows) or Apple Macintosh. Tel: 031-2044252 (w) or 031-7029941 (Pearl); 031-

7083709 (h); E-mail: dynamiclearn@mweb.co.za                                                  
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