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PREFACE
School mathematics is often taught almost completely divorced from real-world contexts
and from other subjects in the curriculum. This is particularly unfortunate because
mathematics today is increasingly applied to more and more problems that affect our daily
lives, from solving problems of traffic congestion to combating pollution, from preserving
natural resources like water and soil to effectively managing a business, from finding a
cure for AIDS to developing improved satellite communications.

The original draft of this book was motivated by the first fully democratic elections in
South Africa in April 1994. It was a time of great excitement and anticipation as everyone
looked forward to finally closing the sad chapter of apartheid in South Africa’s history. It
was also a time of heated debate among South Africa’s politicians, political scientists, and
public regarding the best system of voting and representation for the new South Africa.
The ideal of representative democracy—one-person, one-vote—is a simple idea, but to
achieve this ideal in practice is not. How is a fair and just system ensured? What criteria
can be used to evaluate and compare different systems?

One of the intentions of the original book was to not only bring various options to the
attention of the different political parties at South Africa’s negotiating forum, but to also
discuss in a fairly nontechnical manner some of the mathematical pros and cons of each
method. Although copies of the original book were sent to representatives of each of the
major parties, it is not clear whether it had any influence on the finally adopted Interim
Constitution. (In fact, Hamilton’s method was chosen as the apportionment method for
the historic elections in April 1994, despite the book—and an article of mine in the
influential Finance Week—pointing out its vulnerability to the Alabama paradox.)
However, it is perhaps noteworthy that although proportional representation has been
accepted in South Africa’s final constitution, adopted in May 1996, no specific method of
apportionment is prescribed.

A more important intention of the original draft was to emphasize the following
educational objectives, which are also appropriate for this new, expanded book:
• To demonstrate to students the applicability of mathematics to the analysis of

problems in the seemingly nonmathematical context of the social and political
sciences;

• To challenge the stereotype that mathematics is of value only in certain applied
sciences like physics, chemistry, and computer science;

• To contribute to voter education in general by exposing students to several
different alternatives together with a discussion of the strengths and weaknesses of
those alternatives.
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I hereby wish to thank Crystal Mills and Leslie Nielsen for their excellent work in
substantially editing, expanding, and refining the original book to its present form. The
new version provides an excellent opportunity for a multidisciplinary approach by
teachers from diverse subject areas.

Michael de Villiers
University of Durban-Westville, South Africa
May 1996
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NOTE TO THE TEACHER
One of the interesting challenges of teaching is finding ways to connect two different
subject areas so that both subjects are interesting and accessible. Often when we connect
mathematics to the social sciences, it is only to calculate statistics and graph results. In
this book of activities, the mathematics is interesting yet not overly difficult. The social
studies/political science aspect of the activities is fascinating.

This book can be used in any number of ways. You can do an activity once a week, or
you can do an intense unit on the mathematics of voting. You can do the activities in a
social studies class or in a mathematics class, or you can team teach. You can choose to do
the activities on voting, the activities on apportionment, or both. 

The book is divided into two sections. The first eight activities cover voting methods
and election decision procedures. They are devoted to the question of how a group can
fairly elect one or more candidates from a field of three or more. 

In the second section, students explore the topic of apportionment. Activity 9 is a
general introduction to the problem of apportionment. In Activities 10 through 17,
students explore methods of apportionment that have been considered for apportioning
representatives to the U.S. House of Representatives. In Activity 18, students are
introduced to proportional representation, in which representatives are apportioned by
party rather than by geographical location.

Each activity contains a section called Consider This. Students should work on this part
of the activity in groups. This section of the activity will introduce them to new ideas and
ask them to discuss and evaluate methods. At times they will actually apply an election
decision procedure or apportionment method. Encourage students to take notes on their
procedures and results for use in later activities. After students have completed a Consider
This section, you should have the class regroup to discuss the results of the group work.
In some cases, each group will represent a constituency, and, as a result, an interesting
debate may take place.

In the sections called Explore Further, students continue exploring an election decision
procedure or an apportionment method. The questions in these sections are designed to
be appropriate for homework, although they can also be assigned as group work to be
done in the classroom. In these sections, students will often uncover flaws and problems
in the methods they are exploring.

Many of the activities contain a section labeled Research. In these sections, students are
asked to research historical background as well as current political situations. Much of the
information can be found in encyclopedias and almanacs or in other library sources. If
your students have access to the Internet, they will find much useful information there. It
is helpful to discuss with them keywords they can use in their search. You may need to
clarify how thoroughly you want your students to research a topic. 

The sections labeled Calculator Exploration are optional. Encourage your students to use
calculators whenever they think they will be helpful. With the aid of programmable
calculators or computer spreadsheet programs, students will be able to explore some of
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the apportionment methods in much more detail and will be able to concentrate on the
results of the methods rather than the calculations involved. Some of your students may
want to write their own programs. Calculator programs for most of the apportionment
methods follow Activity 18. You can duplicate the blackline master, or, after inputting the
programs into one calculator, students can use their linking cables to transfer the
programs.

The Research Project is meant to be a long-term project to accompany activities in the
second part of the book. This project can be assigned anytime after students have
completed Activity 9. However, be sure to discuss the idea of proportional representation,
which is presented in Activity 18, before students start their research. You can decide how
to assign students to countries. One model is to ask students to draw names of countries
out of a hat. You could make this a group project and have each group be responsible for
reporting on a country. You might want to assign several countries to each student or
group in the event that some embassies do not respond to requests for information. You
can find addresses for embassies in some almanacs. The following internet address has a
lot of information on electoral systems as well as recent election results (or at least it did
when the book went to press): http://www/keele.ac.uk/depts/po/election.htm1.
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LIST OF COUNTRIES
Countries that use plurality or “winner take all” voting methods
Antigua/Bahamas India
Barbados Jamaica
Canada St. Christopher
France St. Lucia
Great Britain St. Vincent
Grenada Trinidad and Tobago
Haiti United States of America

Countries that use some form of proportional representation
Angola Greece New Zealand
Argentina Guyana Nicaragua
Australia Hungary Norway
Austria Iceland Panama
Bangladesh Ireland Peru
Belgium Israel Poland
Bolivia Italy Portugal
Brazil Japan Senegal
Chile Liechtenstein South Africa
Columbia Luxembourg Spain
Costa Rica Madagascar Sweden
Denmark Malta Switzerland
Dominican Republic Mexico Surinam
El Salvador Mozambique Uruguay
Finland Nauru Venezuela
Germany Netherlands





© 1 9 9 6  b y  K e y  C u r r i c u l u m  P r e s s  • D o  n o t  d u p l i c a t e  w i t h o u t  p e r m i s s i o n xi

RESEARCH PROJECT
In the activities in Is Democracy Fair? you will be exploring voting and apportionment
methods. In the process, you will encounter references to countries that use some of the
methods presented. As you proceed through the activities, you will also be doing a long-
term research project on a government other than that of the United States. You will present
the results of your research project to your class in a form that your teacher will specify.

The following questions can help guide your research:

• How are the citizens in the country you chose represented in their government?

• Does this country have an elected president or prime minister (or both)?

• How many candidates usually run for this position in an election?

• What type of ballot is used in elections?

• What election decision procedure is used?

• Does this country have a representative body like the U.S. Congress?

• How are the representatives elected?

• Are people represented geographically or by party?

• How many parties does the country have?

• How are representatives apportioned to this congress? What apportionment
method is used?

• If you can get the results of a recent election, include them in your report. 

Use the following questions to help you analyze the information you collect:

• Why do you think the people in your country chose the voting and apportionment
methods they did?

• What strengths do the methods they chose have?

• What problems, if any, do you notice as a result of the methods your country uses?

Following are some suggested sources of information:

• Start at your library. Find out as much as you can about the country. Try
encyclopedias and almanacs.

• Search on the Internet to see what information you can gather about the country
you have chosen. 
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• Write letters to your country’s embassy. You may be given another address,
perhaps in the country itself, to write to. International mail takes about a week-to-
ten-days in each direction, so be sure to send your letters early!
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PLURALITY ELECTION
DECISION PROCEDURE
Activity 1

Your math class has just won the
grand prize in the math-a-thon
fund-raiser—a free pizza lunch!
The pizza parlor is offering a
special deal if you order only one
type of pizza. The choices are
ham and pineapple pizza,
pepperoni and mushroom pizza,
and veggie delight pizza. Hold an
election in your class now. Each
person can vote for one pizza. 

Consider This . . .
1. Work with your group to analyze

the results of the election. Enter
the number of votes each pizza
candidate receives in the table
below. Then compute the
percentage of the total votes that
each pizza received.

• Which pizza won? 

• Did your pizza win? 

• Are you satisfied with the results of the election? Why or why not?

Type of pizza
Ham and pineapple
Pepperoni and mushroom
Veggie delight

Number
of votes

Percentage 
of votes
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• Do you feel that the election was fair? Explain.

The method you used to choose a pizza is called the plurality election decision procedure. It is
the way in which many countries hold elections, and chances are it is how you vote for a student
council representative and make other important decisions in your school. When you hold an election
this way, you use a standard ballot on which you vote only for your first choice. Does this method
of election ensure the selection of the choice of the people?

2. The class that won the geography-a-thon also won a pizza lunch, and the results of their
vote are displayed in the table below. Compute the percentage of votes for each type of
pizza and enter these percentages in the table. 

• Do you think the class was satisfied with the results of this election? Why or why
not?

• What do you think would have been the result if the choice of pizzas had been
between a veggie pizza and a meat pizza?

In any election in which there are more than two candidates, it is possible for the least popular
candidate to win. This happens when the majority of votes are split between two or more similar
choices. It can occur in choosing pizzas, in student council elections, and in political elections. 

Explore Further
3. In an election with 1000 voters in which the plurality method is used, what is the

smallest percentage of the total vote by which a candidate could be elected if there are
three candidates? Four candidates? Five candidates? Ten candidates? n candidates?

4. How fair do you think the plurality method is in cases with more than two candidates?
Does the plurality method become more or less fair as the number of candidates increases?

5. The plurality method is still widely used in many countries, such as Great Britain and
countries historically influenced by Great Britain, including the United States, New
Zealand, Canada, and India. Now that you have explored the plurality method of election,
do you think that it is a fair method? Was it a fair way for your class to choose its pizza?
Is it a fair way to choose an elected official?

6. Describe a situation in which you were asked to make a choice or to vote using the
plurality method. Do you think the results were fair? Why or why not? 

Type of pizza
Ham and pineapple
Pepperoni and mushroom
Veggie delight

Number
of votes

Percentage 
of votes

12
8

13
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Calculator Exploration
7. The integer function, INT(x), is very useful in creating formulas to model situations in

which you want the answer to be a whole number. It is defined so that INT(x) of any real
number x is the largest integer smaller than or equal to x; for example, INT(3.7) = 3. Your
calculator may have an INT function built in. See if you can find it, and use it to find each
value below.

a. INT(4.2) b. INT(1.99)
c. INT(0.24) d. INT(12.01)
e. INT(–4.21) f. INT(0.15)

8. Graph each of the functions below. Be sure your calculator is set to dot mode rather than
connected mode. Write a description of each function based on the graph. Use the trace
function to help you interpret the graph.

a. y = INT(x) b. y = –INT(x) c. y = –INT(–x)

9. Consider an election with m voters and n candidates. Write a formula using the INT
function that will allow you to find the smallest percentage of the total vote by which a
candidate could be elected using the plurality method.

Research
10. In the United States, there are traditionally two candidates for president. In some

presidential elections, however, there has been a third candidate. Do some research and
find out in how many presidential elections there has been a third candidate. How many
of these candidates do you think had a significant impact on the outcome of the election?
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TEACHER’S NOTES
This is an introductory activity that explores the most common method of voting in the
United States. Voters are usually asked to choose one candidate from a slate of two or
more. The votes are counted, and whoever receives the most votes wins. This process of
choosing a winner is called the plurality election decision procedure.

Students discover in this activity that the plurality method has a weakness. In
elections with more than two candidates, a candidate can win without obtaining a
majority of the votes cast. In an election among three candidates, if two of them have
similar views, they may split the votes, allowing a candidate who might be the least
popular to win. This situation is presented in the example of the hypothetical class that
won the geography-a-thon. The two different kinds of meat pizzas split the majority of
the votes so that the veggie delight pizza won. If the students who preferred a meat pizza
had agreed on one type of meat pizza before the vote was taken, the result would have
been different.

In Question 1, students are asked to analyze the results of the class’s pizza election.
After they have analyzed the results, encourage a class discussion. In Question 2, students
are asked to discuss their impressions of the election described in the activity. After the
groups have had time to discuss the questions, ask them to report back to the class as a
whole. Students may be surprised at the weakness inherent in the plurality method.
Encourage them to discuss this weakness, as well as possible solutions to the problem of
elections with multiple candidates.

Answers

Consider This . . .
1. Answers may vary.

2.

Answers may vary. Perhaps those students who prefer ham and pineapple pizza would
have voted with the students preferring pepperoni and mushroom pizza, and a meat pizza
would have won.

Type of pizza
Ham and pineapple
Pepperoni and mushroom
Veggie delight

Percentage 
of votes
36.36
24.24
39.39
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Explore Further
3.

4. The plurality method becomes unfair as soon as there is more than one candidate. As the
number of candidates increases, the possibility of a very unpopular candidate winning also
increases.

5. Answers may vary.

6. Answers may vary.

Calculator Exploration
7. a. 4 b. 1 c. 0 d. 12 e. –5 f. 0

8.

9.

Number of candidates
3
4
5

Percentage of votes
needed to win

>33.3
>25
>20

10
n

>10
>100

n

The function returns
the largest integer
smaller than or equal
to x.

The function returns
the opposite of the
largest integer smaller
than or equal to x.

The function returns
the smallest integer
greater than or equal
to x.

a. b. c.

1!    "m
n100 INT !

m
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Research Question
10. Answers will vary.

Presidential election results in years in which there were more than two candidates:

Year Candidate Party Popular vote Electoral vote
1796 John Adams Federalist 71

Thomas Jefferson Dem-Rep 68
Thomas Pickney Federalist 59
Aaron Burr Dem-Rep 30
Scattering 48

1800 Thomas Jefferson Dem-Rep 73
Aaron Burr Dem-Rep 73
John Adams Federalist 65
Charles C. Pinckney Federalist 64
John Jay Federalist 1

1876 Rutherford B. Hayes Republican 4,033,768 185
Samuel J. Tilden Democratic 4,285,992 184
Peter Cooper Greenback 81,737 0

1880 James A. Garfield Republican 4,449,053 214
Winfield S. Hancock Democratic 4,442,035 155
James B. Weaver Greenback 308,578 0

1884 Grover Cleveland Democratic 4,911,017 219
James G. Blaine Republican 4,848,334 182
Benjamin F. Butler Greenback 175,379 0
John P. St. John Prohibition 150,369 0

1888 Benjamin Harrison Republican 5,440,216 233
Grover Cleveland Democratic 5,538,233 168
Clinton B. Fisk Prohibition 249,506 0
Alson J. Streeter Union Labor 146,935 0

1892 Grover Cleveland Democratic 5,556,918 277
Benjamin Harrison Republican 5,176,108 145
James B. Weaver People’s 1,041,028 22
John Bidwell Prohibition 264,133 0

1912 Woodrow Wilson Democratic 6,286,214 435
Theodore Roosevelt Progressive 4,126,020 88
William H. Taft Republican 3,483,922 8
Eugene V. Debs Socialist 897,011 0

1968 Richard M. Nixon Republican 31,785,480 301
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Hubert Humphrey Democratic 31,275,166 191
George C. Wallace American Independent 9,906,473 46

1992 William J. Clinton Democratic 44,909,889 370
George H. Bush Republican 39,104,545 168
H. Ross Perot Independent 19,742,267 0





© 1 9 9 6  b y  K e y  C u r r i c u l u m  P r e s s  • D o  n o t  d u p l i c a t e  w i t h o u t  p e r m i s s i o n 9

ORDINAL AND
CARDINAL BALLOTS
Activity 2

In Activity 1, you discovered that the
plurality method of voting does not
always give fair results. In this and
subsequent activities, you will
investigate other methods of making
election decisions. You need to
consider two aspects of an election:
the type of ballot and what to do
with the information once the ballots
have been completed. 

First, you will investigate
different types of ballots. For the
voter, changing the ballot is the most
dramatic and obvious way to change
the election procedure. 

Ordinal Ballots
One type of ballot that can be used
is called an ordinal ballot. To create
an ordinal ballot, you ask the voters to rank their preferences. Voters can either list their
preferences in order from most to least favorite or assign a number to each candidate in
order of preference. The finished list ranking each voter’s preferences is called a
preference schedule.

Choice
Ham and pineapple
Pepperoni and mushroom
Veggie delight

Rank

Rank your pizza choice. Put 1 by your first choice,
2 by your second choice, and 3 by your last choice.

Changing the ballot is the most obvious way to change the election decision
procedure.
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If a student likes pepperoni and mushroom pizza best but prefers ham and pineapple
pizza to veggie delight pizza, she would mark her ballot like the one below. 

Consider This . . .
1. Katrine likes veggie delight pizza best and is indifferent between the other two pizzas,

which means that she likes them equally well. How would she mark her ballot?

2. Schuyler likes veggie delight pizza best, thinks pepperoni and mushroom pizza would be
okay, and really dislikes ham and pineapple pizza. How would he mark his ballot?

3. If Katrine and Schuyler had used a standard ballot in which they voted only for their
favorite, their votes would have been the same. What information would have been lost?
How important is this information?

4. Use ordinal ballots to take a vote in your math class among the three types of pizza. Once
everyone has voted, tally the votes and summarize the results using preference schedules. 

• How will you decide which pizza is the winner? Discuss with your group how you
think the winner should be determined and then share your decision with the
class. 

• Did all groups come to the same conclusion? If not, can you imagine situations in
which different class members might disagree about how the winner should be
determined?

Cardinal Ballots

If you want to get even more information from your voters, you can use a cardinal ballot. In a cardinal
ballot, you ask voters to rank their choices on a predetermined scale. This type of ballot might tell you
more specifically that a student prefers pepperoni and mushroom pizza only a little bit more than ham
and pineapple pizza but prefers ham and pineapple pizza much more than veggie delight pizza.

Choice
Ham and pineapple
Pepperoni and mushroom
Veggie delight

Rank

Rank each pizza choice on a scale of 1 to 10,
where 10 is the highest score.

Choice
Ham and pineapple
Pepperoni and mushroom
Veggie delight

Rank
2
1
3

Rank your pizza choice. Put 1 by your first choice,
2 by your second choice, and 3 by your last choice.

Ham and pineapple
Pepperoni and mushroom

Veggie delight

Her preference schedule
would look like this:
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5. Fill out the cardinal ballot for pizza with your own preferences and discuss the following
questions with the other students in your group. 

• What information does your completed cardinal ballot give that the standard and
ordinal ballots don’t? 

• Which type of ballot do you prefer?

• Which type of ballot would you want to use to vote for something important to
you?

Explore Further
6. If the voters in your class can always rank the pizzas from most to least favorite, then we

can say that they are never indifferent among the pizza choices. If voters can’t be
indifferent, how many preference schedules are possible using ordinal ballots if there are
four different pizza types? Five pizza types? n pizza types?

7. In another class, some of the students are indifferent about the pizza choices. List the
different preference schedules that are possible using ordinal ballots in their vote between
the three different types of pizza. How many different preference schedules are possible?

8. With four pizza types, there are 75 different preference schedules. Make a statement about
what happens as the number of choices gets larger and students are indifferent.

9. Ordinal ballots are used extensively in Australia and to a lesser degree in the Republic of
Ireland and Malta. Ordinal and cardinal ballots are often used also in consumer or other
surveys. 

• Give some examples of times when you have been asked to fill in a cardinal or
ordinal ballot. 

• Did you feel that you were able to represent your views accurately? 

• Comment on some possible advantages and disadvantages of using ordinal and
cardinal ballots.

10. The geology class has scheduled a field trip, and the students have to agree where to go.
The choices are Grand Canyon, Bryce Canyon, or Death Valley. They take a vote using
ordinal ballots. The results are displayed in the table below. 

Number of students with
this preference schedule 7 4 8 56

Grand
Canyon

Bryce
Canyon

Death
Valley

Death
Valley

Death
Valley

Death
Valley

Death
Valley

Bryce
Canyon

Bryce
Canyon

Bryce
Canyon

Bryce
Canyon

Grand
Canyon

Grand
Canyon

Grand
Canyon

Grand
Canyon
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Several of the students argue that, based on the vote, the class should go to Death
Valley. The rest of the class disagrees. After a heated debate, some of the students
say that Death Valley is the winner using the plurality method. Do you agree with
them? How do you use preference schedules to determine a winner based on the
plurality method? How would you suggest the class make a fair decision based on
the preference schedules?

Calculator Exploration
11. Use your calculator to calculate n!, n2, and 2n for the values of n in the table below. 

12. Look at your results in Question 11. Experiment with your calculator to see if the same
relationship holds for large values of n.

13. Based on your answers to Questions 11 and 12, describe some of the difficulties with
ordinal ballots.

Research
14. Design an ordinal ballot for a survey on a topic of your choice. Collect responses from 20

or more people. Summarize the results of your survey. Save the ballots you collect for use
in a later activity.

n
1
2
3
4
5

n! n 2 2n

6
7
8
9

10
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TEACHER’S NOTES
In this activity, students are introduced to alternatives to the standard ballot, on which
voters mark only their first choice. Both ordinal ballots and cardinal ballots enable voters
to give more information regarding their preferences.

In the formation of new voting procedures in South Africa, arguments against the use
of ordinal ballots were based on the high levels of illiteracy and innumeracy. Illiteracy and
innumeracy are growing problems in the United States, so the same argument could
possibly be applied here as well. It might be interesting to hold a class discussion on
whether students believe voters are capable of using ordinal and cardinal ballots
successfully.

In the Consider This section, students are asked to consider how a voter should mark
a ballot if he or she is indifferent between candidates. In general, if a voter is indifferent
between candidates, he or she assigns them the same number. A blackline master of pizza
ballots is at the end of this activity.

Be sure to save the results of the pizza vote for use in future activities.
Questions 6, 7, and 8 introduce some basic combinatoric principles. Question 6 can

be used to introduce the concept of factorial. As your students approach these problems,
encourage them to use problem-solving techniques such as looking at simpler cases,
drawing a sketch or table, and looking for a pattern.

Conclude this activity with a discussion of how students would like to process the
data from their pizza vote. This discussion leads directly into the next activity, which
begins a series of activities on election decision procedures. If the students’ vote gives a
clear-cut winner, you might want to provide some simulated results that lead to a more
interesting discussion, such as the data from Question 9 in Explore Further.

The Research question asks students to design their own survey and collect “ballots”
from at least 20 people. These results can also be used in the research sections of Activities
3–8. You might have students work with their groups to design questions that will elicit
good results. Students will enjoy analyzing results using their own collected data.

Answers

Consider This . . .
1. Katrine would put 1 by the veggie delight and 2 by the other two types of pizza. 

2. Schuyler would put 1 by the veggie delight pizza, 2 by the pepperoni and mushroom
pizza, and 3 by the ham and pineapple pizza.

3. The information lost is that if Katrine couldn’t have veggie pizza, she would be equally
happy with the other two, but Schuyler would not be happy with the ham and pineapple
pizza.
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4. Answers will vary. This question provides an excellent opportunity for students to discuss
and compare their conclusions.

5. The cardinal ballot allows the voter to express how strong his preferences are. Other
answers will vary. 

Explore Further
6. For 4 pizza types, there are 24 possible preference schedules. For 5 pizza types, there are

120 possible preference schedules, and for n pizza types, there are n! different possible
preference schedules. Encourage students to make a table to solve this problem.

7. Let H, P, and V stand for the three types of pizza. If there are three types of pizza, there
are 13 different possible preference schedules.

8. As the number of candidates increases, the number of different preference schedules
increases dramatically.

9. Answers will vary.

10. Using the plurality method, Death Valley is the winner with 14 votes. Grand Canyon has
12 votes, and Bryce Canyon has 4 votes. Answers will vary for the second question.

Number of pizza types

Number of 
preference schedules

1 2 3 4 5 ... n

1 2 6 24 120 ... n!

HPV H

P

V

H

V

P

H

PV

P

H

V

P

V

H

P

HV

V

P

H

V

H

P

V

PH

VP

H

HV

P

HP

V
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Calculator Exploration
11.

12. For n > 4, n! has the largest value. 

13. Some people may argue that ordinal ballots can be too complicated for some voters.
However, it can also be argued that many people can keep track of complex scoring
systems in games, and can rank their favorite players by statistics. It would seem that
these same people could use a complicated system to voice their preferences. People may
also have difficulty analyzing or understanding the results because of the number of
preference schedules that may result depending on the number of choices and on whether
or not voters express indifference.

Research
14. Answers will vary.

n
1
2
3
4
5

n! n 2 2n

6
7
8
9

10

1 1 1
2 4 4
6 9 8

24 16 16
120 25 32
720 36 64

5,040 49 128
40,320 64 256

362,880 81 512
3,628,800 100 1,024
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Pizza Ballots
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RUN-OFF ELECTIONS
Activity 3

When a country or organization
decides to hold elections, it not
only has to choose what type of
ballot to use, but it also has to
decide how to use the
information from the ballots to
choose a winner. This process of
choosing a winner is called the
election decision. When a
group uses a standard ballot to
hold an election, the plurality
election decision procedure is
used to determine the winner. If
there is no clear winner, then a
revote must take place in which
the voters have to return to the polls. If the group uses ordinal or cardinal ballots and no
candidate obtains a majority vote, it isn’t necessary for the voters to return to the polls.
The information from their ballots about their preferences can be used to determine a
winner using a run-off election decision procedure.

In Activity 2, you examined ordinal and cardinal ballots and voted using ordinal
ballots. You may have had a heated discussion about how to use the information from
your vote fairly. Were you able to agree on a method for deciding the winner? In this
activity, you will explore several election decision procedures that students in a physics
class used in trying to make their pizza decision.

The physics class at Central City High earned a pizza party for having designed and
built a new, effortless teeter-totter for the local playground. They had to choose one of four
types of pizza, and they wanted to be sure that everyone in their class thought the choice
was fair. They decided to use ordinal ballots. After voting, they put the results on the
board using preference schedules, listing the favorite pizza on each schedule first. The
results are summarized in the table below.

The sequential pairwise method is used in the U.S. House of Representatives when
voting on legislation.
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Standard Run-Off Election
Although pepperoni pizza got more first-place votes than any other pizza, it did not get a
majority. To determine the winner, the class chooses to have a run-off election. Because
they used ordinal ballots, they do not need to vote again. All the information they need
can be extracted from the preference schedules. To hold the run-off election, the class
eliminates all the candidates except the top two, that is the two pizzas that got the most
first-place votes. So the run-off election will be between pepperoni pizza and sausage
pizza. To determine the new preference schedules, remove veggie pizza and ham pizza,
and move up pepperoni pizza and sausage pizza to fill in the blank spaces.

In this run-off, pepperoni gets 8 first-place votes and sausage gets 18. 

Consider This . . .
1. In your group, use the run-off procedure to select a winner from the election your class

held in Activity 2. 

2. How does the run-off procedure compare to the plurality method? Use the following
questions to help guide your discussion.

• Do you think this method is more fair than the plurality method? 
Why or why not?

• Do you think more students would be satisfied with the results? Why or why not?

• Would fewer students be really unhappy? Why or why not?

Number of students with
this preference schedule 8 5 6 7

Pepperoni Sausage

Pepperoni Pepperoni PepperoniSausage

Sausage Sausage

Number of students with
this preference schedule 8 5 6 7

Pepperoni Ham Veggie Sausage

Ham

Pepperoni Pepperoni PepperoniSausage

Sausage SausageVeggie

Veggie

Veggie

Ham Ham
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Hare Elimination
There are several variations of the run-off procedure. One variation is the Hare
elimination, sometimes called a sequential run-off. To use this method, refer to the
ballots and repeatedly eliminate the least favorite choice until a single victor emerges. This
method differs from the standard run-off procedure in that you create new preference
schedules each time a choice is eliminated. The physics class decided to experiment with a
sequential run-off. By looking at the preference schedule on the board, they could see that
ham pizza had the fewest first-place votes, so they removed it and got the following
preference schedule.

Now pepperoni pizza has 8 first-place votes, veggie pizza has 11, and sausage pizza has 7,
so sausage pizza is eliminated to give a new preference schedule.

Now there is a run-off between pepperoni pizza and veggie pizza, with veggie pizza 
winning with 18 first-place votes against the 8 first-place votes for pepperoni pizza.

Consider This . . .
3. Use the Hare elimination procedure to determine a winning pizza from the vote your class

held in Activity 2. Did you get the same result as with the first run-off procedure? 

4. In your group, compare the plurality method, the standard run-off procedure, and the
Hare elimination procedure. Decide which procedure you would recommend for your
class to use in its next election.

Sequential Pairwise Election
Another variation of the run-off procedure is the sequential pairwise procedure. This

Number of students with
this preference schedule 8 5 6 7

Pepperoni Veggie Sausage

Pepperoni Pepperoni PepperoniSausage

Sausage SausageVeggie

Veggie

Veggie

Number of students with
this preference schedule 8 5 6 7

Pepperoni Veggie

Pepperoni Pepperoni PepperoniVeggie

Veggie Veggie
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method is used in the U.S. House of Representatives to vote on different options for the
same bill. In the House, the method is referred to as parliamentary procedure. First, one
pair of decision options is considered and a vote is taken; then the winner is paired with
another option, and another vote is taken. This procedure of pairing and voting continues
until a final winner is selected.

In a sequential run-off, the voters’ preference schedules are used to simulate elections
between randomly chosen pairs of candidates. Two candidates are chosen at random, and
the preference schedules are used to determine which is the preferred candidate. The
winner is then paired off with another randomly chosen candidate. The procedure of
pairing off two candidates and voting between them continues until a winner emerges.

To hold a sequential pairwise run-off, the physics class starts by drawing the names of
two pizza types out of a hat. The first two drawn are veggie pizza and sausage pizza. The
class takes the original preference schedule and considers only the battle between veggie
pizza and sausage pizza. They see that 19 out of 26 students preferred veggie pizza to
sausage pizza. Next the students draw pepperoni pizza out of the hat, so pepperoni pizza
is paired with veggie pizza. From the preference schedule, the students see that 18 out of
26 students preferred veggie pizza to pepperoni pizza. Next the students pair ham pizza
and veggie pizza. They see that 20 out of 26 students preferred ham pizza to veggie pizza,
so in the sequential pairwise run-off, ham pizza is the winner. The diagram below shows
the results of this procedure. 

Consider This . . .
5. You have explored three different run-off election decision procedures for the same

election, and the results have been different each time. Discuss the following questions
with your group.

• Which of the three types of run-off elections do you prefer? Why?

• How do you decide whether one method is fairer than another?

• Which procedure would you prefer to use for the pizza vote in your class?

6. Write a short paragraph recommending the procedure you think your class should use for
its pizza selection. Be sure to justify your recommendation. 

Explore Further
7. If there are n candidates in a sequential pairwise run-off, how many times would they

have to be paired off to arrive at a winner?

8. Jacob is so enthusiastic about the run-off election procedures that he suggests that his
family take a vote to decide which movie they will watch from Four Star Video’s Classics
of the Week list. Jacob’s parents agree, and they vote between four movies: Star Wars,

veggie
veggie

veggiesausage
pepperoni

ham
ham
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Dances with Wolves, Sound of Music, and Beauty and the Beast. Their preference schedules
are shown below.

• Is there a winner using the plurality method?

• Is there a winner using the standard run-off procedure? If so, what is it? If not,
why not?

• Is there a winner using the Hare elimination procedure? If so, what is it? If not,
why not?

9. Jacob and his parents decide to try using a sequential pairwise run-off procedure. First
they draw Star Wars out of the hat, then Dances with Wolves, then Sound of Music, and
finally Beauty and the Beast. Which movie wins?

10. Jacob’s mother wonders if the order in which the movies were chosen matters, so they try
it again. This time, they first pull Beauty and the Beast out of the hat, then Sound of Music,
then Dances with Wolves and finally Star Wars. Which movie wins? Did the order matter?

11. The order of pairing off and voting between candidates is called an agenda. 

• Can you find an agenda that results in Sound of Music winning? 

• Can you find an agenda that leads to Dances with Wolves winning?

Research
12. Design an ordinal ballot for a survey on a topic of your choice. Collect responses from 20

or more people. Summarize the results of your survey using each run-off procedure. Be
sure to save the ballots you collect, because you may want to use them in a later activity.
(If you collected survey results in an earlier activity, you can use those ballots for this
research question.)

Jacob

Star Wars Sound of Music Dances with Wolves

Star Wars

Beauty and the Beast

Mother Father

Dances with Wolves

Sound of Music

Sound of Music

Beauty and the Beast

Beauty and the Beast

Dances with Wolves

Star Wars
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TEACHER’S NOTES
Students will probably need more than one class period to complete this activity, and they
will need the voting results from Activity 2.

This activity describes three run-off election procedures. To learn how each procedure
works, students analyze the same results of a vote taken with ordinal ballots. For the
election described in the activity, each procedure gives a different result. As students work
through the activity, they work in their groups to apply the election procedures to the
data from their own pizza election.

At the conclusion of the activity, have the groups present their recommendations of
which procedure to use. Ask students to describe what they think are the strengths and
drawbacks of the various methods and which method they think is fairest.

Answers

Consider This . . .
1–6.Answers will vary.

Explore Further
7. n – 1

8. •   No. There is a three-way tie using the plurality method. 

• No. Using the standard run-off procedure, there are no two unique highest first-
place vote-getters.

• No. After you eliminate Beauty and the Beast, there is no unique lowest vote-getter.

9. Beauty and the Beast wins.

10. Star Wars wins. Yes, the order does matter in a sequential pairwise run-off.

11. There are several possible agendas. One agenda is given for each case. 

For Sound of Music to win, first choose Dances with Wolves, then Star Wars, then Beauty and
the Beast, and then Sound of Music. 

For Dances with Wolves to win, first choose Sound of Music, then Star Wars, then Dances
with Wolves, then Beauty and the Beast.

Research
12. Answers will vary.
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CONDORCET’S ELECTION
DECISION PROCEDURE
Activity 4

In Activity 3, you discovered a problem with
some voting procedures. When Jacob and his
family used the sequential pairwise run-off
procedure, they found that the agenda, not the
voters, determined the final decision! This is
called the agenda effect. Mathematicians,
political scientists, and politicians have all been
interested in finding voting procedures that do
not run the risk of the agenda effect.

The Marquis de Condorcet, an eighteenth-
century mathematician, philosopher, and
political analyst, proposed the following
election decision procedure:

Each pair of candidates should be
considered in its own separate election and
the winner determined. If one candidate
emerges as the winner over all the others in
these separate two-way contests, then that
candidate is the voters’ preferred choice.

The physics class decided to re-examine
their pizza vote using Condorcet’s procedure. The results of their original vote are
displayed below.

Number of students with
this preference schedule

8 5 6 7

Pepperoni Veggie Sausage

Sausage Sausage VeggieVeggie

Veggie HamHam

Ham

Ham

PepperoniSausage Pepperoni Pepperoni

“Can you believe it? Charlie the Chimp has won the election.”
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In order to use Condorcet’s procedure, the students have to consider six two-way
contests—pepperoni versus ham, pepperoni versus veggie, pepperoni versus sausage,
ham versus veggie, ham versus sausage, and veggie versus sausage. For each of these
contests, the students examine the preference schedules to see which pizza is the winner.
Their results are summarized in the table below.

Because ham pizza beat each of the other three pizzas in a two-way race, the class
declares it the winner. 

You can use a tournament graph to illustrate the six two-way contests in this pizza
election. 

This type of diagram is also called a digraph, short for “directed graph.” In the
diagram, the line between two types of pizza indicates that there was a contest between
them. The arrow points from the winner to the loser. You can use this diagram to rank
the four candidates by counting the number of wins each type of pizza has.

From the digraph, you can see that ham pizza has three wins, veggie pizza has two
wins, sausage pizza has one win, and pepperoni pizza has none. This information is
summarized in the table below.

Pepperoni versus ham
Pepperoni
Ham

8 votes
5 + 6 + 7 = 18 votes

Pepperoni versus sausage

Pepperoni versus veggie
Pepperoni
Veggie

8 votes
5 + 6 + 7 = 18 votes

Pepperoni
Sausage

8 votes
5 + 6 + 7 = 18 votes

Ham versus veggie

Ham versus sausage

Veggie versus sausage

Ham
Veggie

Ham
Sausage

Veggie
Sausage

8 + 5 + 7 = 20 votes
6 votes

8 + 5 + 6 = 19 votes
7 votes

8 + 5 + 6 = 19 votes
7 votes

pepperoni sausage

ham veggie
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Consider This . . .
1. Do you think Condorcet’s procedure is fair? Discuss this in your group, using the

following questions as guidelines.

• How would you explain to pepperoni lovers that their pizza, which came in first
using the plurality method, lost using this method?

• Describe some of the positive aspects of Condorcet’s procedure.

• Describe any drawbacks there might be to Condorcet’s procedure.

2. With your class, choose an issue with four choices to vote on. You might choose a political
election, a field trip choice, or a school mascot choice, or you might vote to choose what
topic you will vote on next time! Hold an election using ordinal ballots.

• Analyze the results using Condorcet’s election procedure. Which choice won? 

• Use a digraph to display the results of the election.

• What percent of your classmates do you think are satisfied with the results of the
election? What percent are dissatisfied? 

• Which choice would have won if you had used the plurality method? 

• Which of the election decision procedures you have learned about so far seems
fairest?

Explore Further
3. The geology class has decided to use Condorcet’s election procedure to determine the

results of their field trip vote. Their vote is shown in the table below.

Pizza type
Ham
Veggie
Sausage

Number
of wins

Pepperoni

3
2
1
0

Number of students with
this preference schedule 7 4 8 56

Grand
Canyon

Bryce
Canyon

Death
Valley

Death
Valley

Death
Valley

Death
Valley

Death
Valley

Bryce
Canyon

Bryce
Canyon

Bryce
Canyon

Bryce
Canyon

Grand
Canyon

Grand
Canyon

Grand
Canyon

Grand
Canyon
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• Using Condorcet’s procedure, which option will be the winner? 

• Use a digraph to display the results of the vote. Make a table to show how many
wins each choice has.

• Some of the students want to try the Hare elimination procedure. Which choice
would be the winner using this procedure?

• Which procedure would you recommend the geology class use for their election?
Why?

4. In a physical education class, the badminton group decided to hold a round robin
tournament. In this kind of tournament, each player plays against every other player
once. 

• If there are 18 students in the class, how many games would they have to play? 

• How many rounds would they have to play if there were 100 students? 
n students?

5. Jacob tried to use a run-off procedure in Activity 3 to choose a movie from Four Star
Video’s Classics of the Week list with his family. Since the run-off procedures ended in ties
and the sequential pairwise election gave different results depending on the agenda, he
now suggests that his family use their preference schedules to decide which movie they
will watch, but this time they will use Condorcet’s election decision procedure to
determine the result. Jacob’s parents agree. Their preference schedules are shown below.
What is the result of their vote using Condorcet’s procedure? 

6. Explain why Condorcet’s method does not cure the agenda effect. 

7. In Question 3, you found that the preference schedules for the geology class field trip
provide a Condorcet winner. Explain why any order chosen for the sequential pairwise
method will always result in the same winner when there is a Condorcet winner.

Jacob

Star Wars Sound of Music Dances with Wolves

Star Wars

Beauty and the Beast

Mother Father

Dances with Wolves

Sound of Music

Sound of Music

Beauty and the Beast

Beauty and the Beast

Dances with Wolves

Star Wars
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8. The Social Science Department at Central City High is holding a “Your Vote Counts”
contest. Classes in all departments have been asked to submit an entry related to the
theme. Ms. Pat Riot’s mathematics class submitted the following poster containing
problems related to voting. See how many of the problems you can solve.

Research
9. Write a short biography of the Marquis de Condorcet.

10. Design an ordinal ballot for a survey on a topic of your choice. Collect responses from 20
or more people. Summarize the results of your survey using Condorcet’s election decision
procedure. Be sure to save the ballots you collected, because you may want to use them in
a later activity. (If you collected survey results in an earlier activity, you can use those
ballots for this research question.) 

Condorcet's procedure requires that there be two-way contests between each pair of candidates. 
How many two-way contests are there in an election between five pizzas? Six pizzas? n pizzas?

A.

What is the minimum number of wins a pizza can have in a two-way contest election with n 
pizzas? Investigate.

What is the minimum number of wins that a pizza can have in order to win (have the highest
number of wins in) a two-way contest election using Condorcet's election decision procedure
with n candidates? Investigate.

What is the maximum number of winners in a two-way contest election with n pizzas? 
Investigate.

B.

C.

D.

m & n Pizza Puzzlers

What is the maximum number of wins a pizza can have in a two-way contest election with n 
pizzas? Investigate.

E.
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TEACHER’S NOTES 
Students may be eager to explore an alternative election procedure, since each run-off
procedure in Activity 3 yielded a different result.

This activity includes a brief exposure to digraphs. A digraph is a finite, nonempty set
of points, called vertices, together with some directed edges joining pairs of these points.
These directed edges are subject to one restriction: The initial and terminal vertices of a
directed edge may not be the same. Digraphs are used in discrete mathematics. They can
be used to represent networks of one-way streets, hierarchies of relationships, friendship
relationships, and logical relationships. 

Condorcet’s method leads to some interesting problems, as does Borda’s procedure,
which is presented in Activity 5. These problems are presented in Question 8. Proofs for
the puzzlers are included in the answers. Some of your students may be able to provide
proofs, although the activity doesn’t ask them to do so. You might want to ask students to
come up with other puzzlers on their own.

Question 4 in Explore Further involves generating a formula for the sum of numbers
from 1 to n. If your students haven’t been exposed to this before, it can be a fun topic.
The story, which is only a myth, is that Gauss as a young boy did not behave well in his
math class. As punishment, his teacher told him to find the sum of the numbers from 1 to
100. Gauss quickly replied that the sum was 5050. The teacher then asked for the sum
from 1 to 1000, and Gauss responded that the sum was 500,500. Supposedly, the teacher
was not pleased with Gauss’s precociousness! Gauss used a “trick” to see that the sum of
the numbers from 1 to n is . You can find examples of Gauss’s method in many
standard algebra textbooks. 

Answers  

Consider This . . .
1. Answers will vary.

2. Answers will vary.

Explore Further
3. •    The Grand Canyon will be the winner if Condorcet’s method is used.

n(n + 1)
2



• The digraph should look like the one at right. The table below represents the
information in the digraph.

• Grand Canyon would be the winner using the sequential run-off procedure.

• Answers will vary.

4. With 18 students, there will be 153 matches. With 100 students, there will be 4950
matches. With n students, there will be matches.

5. There is no winner. None of the movies beats all the others in the six two-way contests.

6. Whenever the agenda effect is present, Condorcet’s method will not select a winner.

7. If a candidate is a Condorcet winner, it can beat every other candidate in a separate two-
way contest. To hold a sequential pairwise run-off, regardless of the agenda chosen, the
Condorcet winner at some point will be paired against another candidate in a two-way
contest. Each time this happens, the Condorcet winner will win the two-way contest,
thereby winning the sequential pairwise run-off.

8. A.  With five pizzas there are 4 + 3 + 2 + 1 = 10 winners; with six pizzas there are 15
winners; with n pizzas there are winners.

Proof: Each candidate participates in n – 1 two-way contests. The product n(n – 1) counts each
contest twice, so the total of two-way contests is given by .

B. The maximum number of wins is n – 1.

Proof: A candidate will receive the maximum number of wins when it wins each two-way contest in
which it participates. Since each candidate is in n – 1 contests, n – 1 is the maximum number
of wins. Note that only one candidate can have this maximum number of wins, since the other
candidates must have lost to it, and their number of wins therefore cannot be n – 1.

C. The minimum number of wins in a two-way contest election is 0.

Proof: A candidate will have a minimum score if it loses all its two-way contests. Note that only one
candidate can have this minimum, since all the other candidates must have won against it, and
their scores therefore cannot also be zero.

D. The minimum number of wins using Condorcet’s election decision procedure is 

.
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Death Valley

Grand Canyon Bryce Canyon

Grand Canyon
Death Valley
Bryce Canyon

0
2

1

n(n - 1)
2

(n - 1)
2

n(n - 1)
2

n(n - 1)
2
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Proof: Assume that the winner wins w of the two-way contests. Since there are contests in
all, the other candidates can win a combined total of              – w contests. Each of the other
candidates can win no more than w contests, so their combined total must be less than 
(n – 1)w. This leads to the inequality (n – 1)w � – w, which can be simplified to 
w � .

E. If n is odd, there can be n winners. If n is even, there can be at most 
n – 1 winners.

Proof: In puzzler A, you found that there are contests that can be won. The average score
per candidate can be found by dividing the total number of possible wins by the number of
candidates to get A = .

If n is odd, A is an integer, and it is therefore possible that all n candidates have
the same score. If n is odd, then A cannot be an integer, and all n candidates
cannot have the same score. If one candidate’s score is zero, though, it is possible
that the other (n – 1) candidates are tied with the same score of   . Note that    is
an integer in this case, since n is even.

Research
9. Condorcet’s (1743–1794) full name was Marie-Jean-Antoine-Nicolas Caritat de Condorcet.

In the late eighteenth century, several new branches of mathematics had been created.
These branches led to complicated problems for which no general solutions could be
found, and prominent mathematicians such as Euler, d’Aemgert, and Lagrange believed
that mathematics had almost exhausted its ideas; they saw no new great minds on the
horizon. Condorcet was more optimistic. He believed that application and theory worked
together, one inspiring the other, and he predicted that mathematics was only beginning
to achieve its promise.

In 1765, Condorcet wrote Du calcul integral, in which he tried unsuccessfully to create
order out of all the various tricks and methods used to solve differential equations.
Condorcet was also on the committee of the French Academy of Sciences, which set up
the metric system.

10. Answers will vary.

n(n - 1)
2n(n - 1)

2

n(n - 1)
2

(n - 1)
2

(n - 1)
2

n
2

n
2

n(n - 1)
2
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BORDA’S ELECTION
DECISION PROCEDURE
Activity 5

Jean-Charles Borda was born in
Dax, France, on May 4, 1733.
He was the tenth of 16 children.
His parents were both members
of the nobility, and his family
had a history of serving in the
military going back to the early
seventeenth century. Borda
became a major figure in the
French navy and participated in
the American Revolution as well
as in many scientific voyages. In
addition to his work in fluid
mechanics and the development
of instruments, he was one of
the first to develop a
mathematical theory of
elections. 

Borda was concerned that the plurality method of election might select the wrong
candidate. He suggested an alternative to Condorcet’s election decision procedure, that he
called “the method of marks.” Borda suggested giving each candidate “marks” or “points”
based on how well he or she did in each of the preference schedules. In an election
between n candidates, the winner of each contest gets n – 1 points for being in first place.
The second-place candidate gets n – 2 points, the third-place candidate gets n – 3 points,
and so on down to the last-place candidate, who gets 0 points. 

The physics class decided to try Borda’s procedure in their pizza election. Their
election was between four candidates, so for each preference schedule the first-place pizza
gets 3 points, the second-place pizza 2 points, the third-place pizza 1 point, and the last-
place pizza 0 points. 

Being the tenth of sixteen children, Borda had lots of practice in perfecting his 
voting procedure.
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To assign the points, the physics class looked at the preference schedules. Pepperoni
was the first choice of eight students and got 3 points from each of them. It was the
fourth choice of five students with one preference schedule, the fourth choice of six
students with a different preference schedule, and the fourth choice of seven more
students with yet another preference schedule. Therefore, pepperoni pizza has a total of
24 points.

Vote count for pepperoni pizza: 8(3) + 5(0) + 6(0) + 7(0) = 24

The other three pizzas receive points using the same process:

Vote count for ham pizza: 8(2) + 5(3) + 6(2) + 7(2) = 57

Vote count for veggie pizza: 8(1) + 5(2) + 6(3) + 7(1) = 43

Vote count for sausage pizza: 8(0) + 5(1) + 6(1) + 7(3) = 32

Because ham pizza has the most points, the physics class once again declared it the
winner. The choices can be ranked from high to low, using each candidate’s “Borda
count:” ham, veggie, sausage, and pepperoni. In this case, the ranking is the same as the
ranking achieved using Condorcet’s procedure.

Consider This . . . 
Your mathematics teacher has offered your class the opportunity to choose one night a
week on which she won’t assign homework, if everyone can agree on the night. The
choices are Monday, Tuesday, Wednesday, or Thursday. Take a class vote using ordinal
ballots, and use Borda’s election decision procedure to determine the result.

1. In your groups, discuss the results of the vote. Use the following questions as guidelines.

• Were you satisfied with the results of the vote? Why or why not?

• Explain why you think Borda’s procedure is fair or not fair.

• In what ways does Borda’s procedure seem better or worse than Condorcet’s
procedure? 

Number of students with
this preference schedule 8 5 6 7

Pepperoni Veggie Sausage

Sausage Sausage VeggieVeggie

Veggie HamHam

Ham

Ham

PepperoniSausage Pepperoni Pepperoni

3

2

1

0
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• How do the results using Condorcet’s method compare to the results using
plurality?

• Which procedure would you recommend using the next time your class takes a
vote? Why?

Explore Further
2. In Activities 3 and 4, Jacob and his family tried to use run-off procedures and Condorcet’s

election decision procedure to determine which movie to watch. What is the result of the
family vote using Borda’s procedure? Does the procedure give a ranking and a winner?

3. Ms. Pat Riot’s mathematics class decided that m and n pizza puzzlers were such fun that
they came up with a few more!

4. Suppose that instead of using n – 1 points for first place in an n-candidate election, n – 2
for second place, and so on, you used p points for first place, q points for second place, r
for third place, and so on, where p > q > r > . . . . Will the relative rankings of the
candidates change, or will they always remain the same? Investigate.

Jacob

Star Wars Sound of Music Dances with Wolves

Star Wars

Beauty and the Beast

Mother Father

Dances with Wolves

Sound of Music

Sound of Music

Beauty and the Beast

Beauty and the Beast

Dances with Wolves

Star Wars

What is the maximum number of points a Borda winner can have in an election with n pizzas
and m voters? Investigate.

A.

What is the sum of all the Borda points for n pizzas and m voters? Investigate.

What is the minimum number of points a Borda winner can have with n pizzas and m voters?
Investigate.

What is the minimum number of points a Borda candidate pizza can have with n pizzas and
m voters? Can more than one candidate have this minimum score? Investigate.

B.

C.

D.

More m & n Pizza Puzzlers

What is the maximum number of Borda winners in an election with n candidates and m voters?
Investigate.

E.
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Calculator Exploration
5. If your calculator can do matrix operations, then you can easily compute the vote totals

for the Borda’s election decision procedure. Store the Borda points for the preference
schedules in matrix A and the frequency of each schedule in matrix B. You would enter
the pizza preference schedule and frequencies in matrices like those shown below. Each
horizontal row in matrix A represents the point value for one type of pizza.

Be sure you understand why the numbers are arranged the way they are in the matrices,
and then check that the product of these matrices provides the correct results. Use this
method to explore possible results for Question 4.

Research 
6. Design an ordinal ballot for a survey on a topic of your choice. Collect responses from 20

or more people. Summarize the results of your survey using Borda’s election decision
procedure. Be sure to save the ballots you collected, because you may want to use them in
a later activity. (If you collected survey results in an earlier activity, you can use those
ballots for this research question.)

3   0   0   0   8
2   3   2   2   5
1   2   3   1   6
0   1   1   3   7

P
H
V
S
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TEACHER’S NOTES
In France during the late eighteenth century, there was a drive to apply the methods of
rigorous and mathematical thought to the human sciences. Some of the more successful
attempts were made in the field of political science by three French academicians: Borda,
Condorcet, and Laplace. Their contributions were promptly lost for two centuries, but
after being rediscovered in the 1950s, they now play a central role in the literature of
public choice.

Jean-Charles Borda, in addition to his contributions to the mathematics of voting, was
a brilliant physicist. His most important contributions were his work in fluid mechanics
and his development and use of instruments for navigation, geodesy, and the
determination of weights and measures. 

Borda’s election decision procedure is a variation of Condorcet’s that involves assigning
points to each candidate based on how well he or she does in each two-way contest.
Borda’s procedure leads to some interesting problems, which are presented in Question 3.
Proofs for the puzzlers are included in the answers. Some of your students may be able to
provide proofs, although the activity doesn’t ask them to do so. You might want to ask
students to come up with other puzzlers on their own.

Answers

Consider This . . .
1. Answers may vary. The results using Condorcet’s method are the reverse of the results

using plurality.

Explore Further
2. Using Borda’s procedure, Dances with Wolves wins with 6 points. Star Wars gets 5 points,

Sound of Music gets 4 points, and Beauty and the Beast gets 3 points.

3. A.  The maximum number of points is (n – 1)m.

Proof: A candidate would have the maximum Borda score if it is ranked highest in each of the
preference schedules. In this case, there are m voters, each of whom gives the candidate n – 1
points.
Note that only one candidate can have this score, because the other candidates must have been
ranked lower and their score therefore cannot also be (n – 1)m.
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B. The sum is .

Proof: The sum of all the Borda scores is given by 
m(n – 1) + m(n – 2). . . + m(2) + m(1) + m(0), which simplifies to 
m[(n – 1) + (n – 2) + . . . + 2 + 1 + 0] = .

C. The minimum number of points is greater than .

Proof: Assume that there is one winner whose score is w. In puzzler B, you found that the sum of
all the scores of all the candidates is  , so the sum of the scores of the nonwinning
candidates is                – w. Since the winner has w points, the score of each of the other 
(n – 1) candidates is less than w. Therefore, (n – 1)w >          – w , which reduces to 
w >              .

D. The minimum score is 0.

Proof: A candidate would have the minimum score if it is ranked lowest by all m voters. Since the
lowest ranking is worth zero Borda points, the minimum score is given by 0 • m = m. Note that
only one person can have this score, because the other candidates must have been ranked higher
and therefore their score cannot also be zero.

E. If either m is even or n is odd, there can be n winners. If m is odd and n is even,
there can be at most n – 1 winners.

Proof: In puzzler B above, you found that the sum of all the Borda scores is  . The
average score per candidate is therefore A = . If either m is even or n is odd, A is
an integer and it is therefore possible that all n candidates have the same score of A. 

4. It turns out that the rankings will not necessarily always stay the same. Consider the
preference schedules from the physics class’s pizza vote above. If a first-place position is
given 100 points, second place 3 points, third place 2 points, and fourth place 1 point,
then the resulting ranking is as follows:

Pepperoni: 8(100) + 5(1) + 6(1) + 7(1) = 818

Ham: 8(3) + 5(100) + 6(3) + 7(3) = 563

Veggie: 8(2) + 5(3) + 6(100) + 7(2) = 645

Sausage: 8(1) + 5(2) + 6(2) + 7(100) = 730

There is a completely different winner using this point system, and the ranking is in
reverse order of that of the original Borda ranking. This is actually the plurality ranking,
which can always be achieved by awarding the first-place position enough points.

mn(n - 1)
2

mn(n - 1)
2

mn(n - 1)
2

mn(n - 1)
2

mn(n - 1)
2

mn(n - 1)
2

m(n - 1)
2

m(n - 1)
2

m(n - 1)
2



Calculator Exploration
5. The resulting matrix should be       . Other answers will vary.

Research
6. Answers will vary.
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24
57
43
32





© 1 9 9 6  b y  K e y  C u r r i c u l u m  P r e s s  • D o  n o t  d u p l i c a t e  w i t h o u t  p e r m i s s i o n 39

BLACK’S ELECTION
DECISION PROCEDURE 
Activity 6

Activities 4 and 5 introduced election decision
procedures proposed by the Marquis de
Condorcet and Jean Borda to determine the
winner of an election. These two methods
often produce similar results. But how can you
determine a winner if the results are different?
Condorcet and Borda had many discussions
and often heated debates about which one of
their methods produced the best results. The
mathematician C. L. Dodgson, who was the
author of Alice in Wonderland under the
pseudonym Lewis Carroll, was also interested
in election theory, in particular the paradoxes.
He studied and wrote about the methods of
Condorcet and Borda. Duncan Black, a
twentieth-century English political scientist
who was born in 1908 in Motherwell,
Scotland, rediscovered the works of Condorcet, Borda, and Dodgson. Black’s work is the
foundation of much of the subsequent research on election decision procedures. In 1958,
Black wrote “The Theory of Committees and Elections.” He also wrote a biography of
Dodgson.

Consider This . . .
1. The board of a cooperative grocery store is attempting to decide between three different

suppliers of organic produce. The suppliers differ in their price and also in the quality of
their produce and the extent to which their products are organic. The board has decided
that for financial reasons it is important to stick with one supplier.

The three suppliers are Alpha Organics, Best Veggies, and Fine Fodder. The five board
members decided to take a secret ballot using ordinal ballots. The results of their vote are
shown below.

Little Duncan Black’s favorite bedtime stories.



B L A C K ’ S  E L E C T I O N  D E C I S I O N  P R O C E D U R E A C T I V I T Y  6

40 © 1 9 9 6  b y  K e y  C u r r i c u l u m  P r e s s  • D o  n o t  d u p l i c a t e  w i t h o u t  p e r m i s s i o n

• Use the preference schedules to find the winner using Condorcet’s procedure.

• Use the preference schedules to determine the winner using Borda’s procedure.

• Compare the results of Condorcet’s and Borda’s procedures. Discuss with your
group how you would advise the board to resolve the conflict.

Black suggested reconciling the methods of Condorcet and Borda by following this procedure: If there is
a Condorcet winner, choose him or her. If there is no Condorcet winner, choose the Borda winner. In
the case of the cooperative grocery store, Alpha Organics would be chosen as the supplier.

Another solution, proposed in 1907 by Australian E. J. Nanson, is to use a method called “Borda
elimination.” First, compute the Borda points. Then remove the candidate with the lowest Borda count
and recompute the Borda points. Continue this process until a winner is determined. In the example
above, after the first round Alpha Organics has 6 points, Best Veggies has 7 points, and Fine Fodder
has 2 points. Eliminate Fine Fodder, since it received the fewest Borda points. The preference schedules
now look like this:

Recompute the Borda points. Alpha Organics now has 3 points, and Best Veggies has 2 points, so
Alpha Organics wins. In this example, Borda elimination produces the same results as the Condorcet
method.

2. The senior orchestra at Central City High is planning an event to celebrate winning the
All State Competition. Three possibilities have been proposed: a trip to the local
amusement park, an all-night dance, and a trip to the city to hear a concert. The orchestra
determined that each of the three choices would cost about the same, so they decided to
take a vote. Their votes are shown in the preference schedules below.

Alpha Organics
Best Veggies
Fine Fodder

3 2

Alpha Organics
Fine Fodder
Best Veggies

Alpha Organics
Best Veggies

3 2

Alpha Organics
Best Veggies

Amusement park

8 11 12 20 16

Amusement park

Amusement park

Amusement park

Amusement park Dance

Concert

Concert

ConcertConcert

Concert Dance

Dance

Dance

Dance
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• Use Borda elimination to determine the winning choice.

• Use Black’s proposal to determine the winner.

3. Compare the results obtained using each of the four methods (Condorcet’s, Borda’s,
Black’s, and Borda elimination) with the preference schedules in the example and those in
Question 1. Try to generalize about when these methods will give the same result. When
they don’t give the same result, which method seems fairest? 

Explore Further
4. Ultimate Frisbee is a growing sport at Central City High. The Ultimate Club is sponsoring

a weekend event, and each participant will receive a tee-shirt. The team decided to have
the participants vote on the color of the tee-shirt. Team members collected the ballots and
tabulated them. The results are shown in the preference schedules below.

• Determine the winner of the election by the plurality method. To do this, consider
only the first-place votes.

• What percentage of the first-place votes did the winner receive?

• Use Black’s method to determine the winning tee-shirt color. Is there a Condorcet
winner?

• Use Borda elimination to determine the winning tee-shirt color. 

5. The Ultimate Club has decided to provide a few hours of entertainment during their
weekend event. The club has narrowed down the options to four possibilities: frisbee dog
tricks, film clips of great ultimate games, an outdoor concert, and a demonstration of
special frisbee techniques. The members of the club voted using ordinal ballots. The
preference schedules below show the results of their vote.

Watermelon

20 18 23 25

Purple

Teal

Fuchsia

Eggshell

712

Watermelon

Watermelon

Watermelon

Watermelon

Watermelon

Teal

Teal

Teal

Teal Fuchsia

FuchsiaFuchsia

FuchsiaFuchsia

Purple

Purple

Purple

Purple

PurpleEggshell

Eggshell

Eggshell

Eggshell

Eggshell

Teal
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• Use Black’s method to determine the winner. Is there a Condorcet winner?

• Use Borda elimination to determine the winner. If you have a programmable
calculator, you can use matrices to do the computations at each stage.

• Compare the results using Black’s method and Borda elimination. What choice
would you recommend the Ultimate Club make?

6. There is a theorem that states that if there is a Condorcet winner, Borda elimination will
always choose it. Give an explanation of why this is the case. 

Research
7. Design an ordinal ballot for a survey on a topic of your choice. Collect responses from 20

or more people. (If you did a survey in a previous activity, you can use those results for
this activity.) Analyze the results of your survey using Black’s and Nanson’s proposals. Did
both procedures produce the same results? If not, which result more accurately reflects
the results of your survey?

Technique demo

8 3 14 13 6

Dog tricksDog tricks

Technique demo

Dog tricks

Film clips

Outdoor concert

Dog tricks

Film clipsDog tricks

Outdoor concert Techn ique demo

Outdoor concert

Outdoor concert

Film clips

Technique demo Technique demoFilm clips Film clips

Outdoor concert
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TEACHER’S NOTES
Duncan Black studied at the University of Glasgow and spent most of his teaching career
at the University College of North Wales, Bangor. He worked in the 1940s to develop a
pure science of politics as a ramified theory of committees so that political science would
be on the same kind of theoretical footing as economics. 

Encourage your students to use matrices to compute the Borda scores for Borda’s
method and Borda elimination. It might be helpful for students to first write up the
matrices and then enter them into their calculators. 

Answers

Consider This . . .
1. • Using Condorcet’s procedure, Alpha Organics wins each two-way contest and is 

therefore the winner.

• Using Borda’s method, each supplier receives the following Borda score:

Alpha Organics: 3(2) + 2(0) = 6

Best Veggies: 3(1) + 2(2) = 7

Fine Fodder: 3(0) + 2(1) = 2

Using Borda’s method, Best Veggies is the winner.

• Answers will vary.

2. • Using Borda elimination, the amusement park wins.

• Using Black’s method, the amusement park is the Condorcet winner.

3. For Question 1, the winners are: 

Alpha Organics (Condorcet)

Best Veggies (Borda)

Alpha Organics (Black)

Alpha Organics (Borda elimination)

For Question 2, the amusement park wins using any method. Other answers will vary.
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Explore Further
4. • Watermelon wins using the plurality method.

• The winner received 23.8% of first-place votes.

• Purple wins using Black’s method. There is no Condorcet winner.

• Purple wins using Borda elimination.

5. • Using Black’s method, the dog tricks option will win. There is no Condorcet winner, 
and the dog tricks option wins using Borda’s method.

• Using Borda elimination, the film clips option wins. Using matrices, the process
looks like this:

First round:

In this round, the technique demo option has the fewest points and is eliminated.

Second round:    

In this round, the dog tricks option has the fewest points and is eliminated.

Third round:   

In this round, the outdoor concert option has the fewest points and is eliminated,
leaving the film clips option as the winner.

• Answers will vary.

6. Suppose candidate X is a Condorcet winner; then X beats every other candidate in a two-
way contest. This means that for each candidate X is ranked above that candidate more
than X is ranked below that candidate. This means that the X appears, on average, more
than halfway up all the preference schedules, so X has a higher-than-average Borda count.
This in turn means that X will never have the lowest Borda count and will therefore never
be eliminated using Borda elimination.

Research
7. Answers will vary.

3   3   1   2   1
2   0   3   0   2
1   1   2   3   0
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SINGLE 
TRANSFERABLE VOTE
Activity 7

An election decision procedure
that is sometimes used when
more than one candidate is to
be elected is called the single
transferable vote (STV). It is
also called preferential
voting. This method was first
proposed in the 1850s by
Thomas Hare, an English
barrister, and Carl Andrae, a
Danish mathematician. When
you use this method to elect a
single winner, the results are
the same as those you get
using the Hare elimination
method in Activity 3. The
single transferable vote
method is used to elect public
officials in Australia, Malta,
and the Republic of Ireland;
for local city council elections
in Cambridge, Massachusetts; and for local school board elections in New York City.
Preferential voting is often used in elections for school or university boards, city councils,
and club committees, as well as for electing officials in professional and other
organizations. It is the method used to select nominees for the movie industry’s Academy
Awards.

One reason for choosing a method such as the single transferable vote is to assure
proportional representation of the voting constituency. For example, a school board might
need to be chosen to represent a diverse neighborhood consisting of a variety of ethnic
and religious groups. If the plurality method is used, it’s quite possible that the winning
slate will represent only the group with the largest number of voters. An advantage of the
single transferable vote method for the voter is that if your vote doesn’t help elect your

All right, we eliminated George and Julie, we transferred votes to Linda and Susan,
and we distributed all the surplus votes to the remaining candidates. Who do you
show winning this time?



S I N G L E  T R A N S F E R A B L E  V O T E A C T I V I T Y  7

first-choice candidate, it will be counted toward one of your lower choices. 
To use the single transferable vote method, each voter must complete an ordinal

ballot, listing the candidates in order of preference. The first-choice votes are tabulated,
and candidates who achieve a prescribed quota of votes are declared elected. If a
candidate receives more first-choice votes than the quota, the surplus of votes is
transferred proportionally to the other candidates. (The details of how votes are actually
transferred differ from one system to another.) If no candidate at a given stage has a quota
and there are more seats to be assigned, the lowest vote getter is eliminated, and the
ballots for this candidate are transferred, as in the sequential run-off, to other candidates.
The process continues until all the seats are filled. The diagram below will help you
understand this process.

The quota is usually defined this way: If there are s seats to be filled by n available
candidates, where n > s, and the number of voters is m, then the quota is given by 

. (The brackets indicate the greatest integer.)

The single transferable vote method could be used to elect two representatives to a
countywide residents’ association. There are 23 voters in the Midlands residents’
association, 13 Conservatives and 10 Liberals. The Conservative candidates are Winston
and Nadia, with Winston the more conservative of the two. The Liberal candidates are
Theo and Rudy, with Rudy the more radical of the two. In a vote for representatives to the
countywide residents’ association, using ordinal ballots, the following preference
schedules emerged.

Count the first-place preferences
for each candidate.

Does any candidate
have at least quota

or more? Eliminate the last-place
candidate and distribute his

or her votes

Have enough
candidates been

elected?

Distribute the surplus
votes of all newly
elected candidates.

No

Yes No

Finish

Yes

m
s + 1Q = +1

The single transferable vote method could be used to elect two representatives to a
countywide residents’ association. There are 23 voters in the Midlands residents’
association, 13 Conservatives and 10 Liberals. The Conservative candidates are Winston
and Nadia, with Winston the more conservative of the two. The Liberal candidates are
Theo and Rudy, with Rudy the more radical of the two. In a vote for representatives to the
countywide residents’ association, using ordinal ballots, the following preference
schedules emerged.
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To use the single transferable vote method, first compute the quota. In this case,
. None of the candidates received the quota of first-place votes, so the

lowest vote-getter, Rudy, is eliminated. The votes of Rudy’s four supporters are transferred
to Theo, their second choice, giving these new preference schedules.

Theo now has two votes more than the quota, and he is elected. Theo’s two surplus votes are
transferred to Nadia, resulting in these preference schedules.

Nadia has now reached the quota, and she is elected to the remaining seat.

Consider This . . .
1. Compare the result using the single transferable vote method to the result using Hare’s

sequential run-off method for the Midlands residents’ association. Which result seems to
best represent the wishes of the voters?

2. If the size of the residents’ association were increased so that Midlands could elect three
representatives, which candidates would be elected using the single transferable vote
method?

3. If the size were decreased so that Midlands was allowed only one representative, who
would be elected using the single transferable vote?

7
Winston
Nadia
Theo

6

Rudy

6 4
Conservative Liberal

Winston

Winston Winston

Nadia

Nadia NadiaTheo

Theo
Theo

Rudy

Rudy
Rudy

7
Winston
Nadia
Theo

6 10
Conservative Liberal

Winston
Winston

Nadia
Nadia

Theo

Theo

7
Winston
Nadia
Theo

8
Conservative

Winston
Nadia

Theo

23
2 + 1Q = +1 = 8
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Explore Further
4. Just before the latest election was held in Midlands, three students turned 18 and became

eligible to vote. An election was held, with the same candidates, resulting in the following
preference schedules. Which two candidates would be elected using the single
transferable vote method?

5. What would have been the results of the election if two voters who preferred Rudy to
Theo changed their minds and preferred Theo to Rudy? Use the new preference schedules
to determine the two winning candidates.

6. Compare the results of the elections in Questions 4 and 5. What do you notice? Do you
think it is fair?

7. The town of Smytheville, with 1608 voters, held an election for two positions on the city
council, that resulted in the preference schedules shown below. Which candidates would
be elected using the single transferable vote method? (You will need to decide how to allot
the extra votes after the first round.) Be sure to explain your method. Do you think the
results are fair? Why or why not?

9
Winston
Nadia
Theo

6

Rudy

2 4

Rudy

Winston Winston

Theo

Nadia NadiaNadia

Rudy
Theo

Winston

Theo

5
Nadia
Theo

Rudy

Rudy
Winston

9
Winston
Nadia
Theo

6

Rudy

2 4

Rudy

Winston Winston

Theo

Nadia NadiaNadia

Theo
Theo

Winston

Rudy

5
Nadia
Theo

Rudy

Rudy
Winston

74
Anders
Marie
Kristina

121 365 285

Anders
Kristina

Anders KristinaMarie

Kristina
AndersMarie

346
Marie
Kristina

Marie

Anders

417
Anders
Kristina
Marie
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Research 
8. Find out about some places or organizations where the single transferable vote method is

used or has been used in the past. See if you can find out why this method was chosen or
why it is no longer used. You may find it helpful to research the term “preferential voting.”

9. Different methods are used to “transfer” votes in applying the single transferable vote
method. Find out about at least one of these methods and provide an example to show
how the method works.
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TEACHER’S NOTES
The single transferable vote seems to provide voters with a way of fully expressing their
preferences, ensuring maximum and equitable consideration of each voter’s preferences.
This method, however, is subject to four different paradoxes. In “Paradoxes of Preferential
Voting,” Peter Fishburn and Steven Brams summarize them:

• No-show paradox: The addition of identical ballots with candidate X ranked last
may change the winner from another candidate to X.

• Thwarted-majorities paradox: A candidate who can defeat every other candidate
in direct-comparison majority votes may lose the election.

• Multiple-districts paradox: A candidate can win in each district separately yet lose
the general election in the combined districts.

• More-is-less paradox: If the winner was ranked higher by some voters, with all
else unchanged, another candidate might have won. 

One of these paradoxes is uncovered in Question 6. If you have students who are
interested in further reading, they may enjoy Fishburn and Brams’s article in Mathematics
Magazine. It is presented in a way that makes it accessible to many high school students.

Answers

Consider This . . .
1. Using Hare’s sequential run-off method, Winston and Theo win. Answers may vary as to

which result better represents the wishes of the voters, but Nadia is rated above Winston
on three of the four different preference schedules.

2. With three seats, the quota is . So Winston, Nadia, and Theo all meet
the quota and are elected.

3. With only one seat, the quota is 12. All four candidates fall short, so Rudy is eliminated,
which gives the three-column preference schedule in the example. But all three remaining
candidates still fall short of the quota, so Nadia is eliminated, and her 6 votes are
transferred to Winston, who is then elected.

Explore Further
4. The quota with 26 voters will be . Since Winston has reached the

quota, he is elected. Winston has no surplus votes, so Nadia, who is the lowest first-place
vote-getter, is eliminated, and her 5 votes are transferred to Theo, giving the following
preference schedules.

26
2 + 1Q = +1 = 9

23
3 + 1Q = +1 = 6



Theo is elected with 11 votes.

5. In this case, Winston is immediately elected again, with no surplus votes to transfer. This
time Rudy is the lowest vote-getter. Rudy’s four votes are transferred to Nadia, who now
meets the quota with 9 votes.

6. The results of the elections in Questions 4 and 5 are paradoxical. The only difference in
the preference schedules is that in the second election two voters changed Theo from their
second to their first choice. This had the strange result of denying him the election! It
doesn’t seem fair that a candidate can lose an election because he or she received too
many first-place votes and would in fact have won if some voters had voted for him as
their second choice rather than their first. Fishburn and Brams (1983) call this the “more-
is-less” paradox.

7. The quota is 537. In the first round, Marie is elected with 631 votes. She has a surplus of
94 votes, which are distributed in proportion to Anders and Kristina. One way to do this
is to give Kristina more votes. Anders would receive votes.
Kristina now has 486 + 52 = 538 votes, which is one more vote than the quota, so she is
elected.

Research
8. Answers will vary.

9. Answers will vary. The differences are usually in the methods used to distribute the votes
proportionally.
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346
631 • 94 � 52 285

631 • 94 � 42

2
Rudy
Theo

4

Theo
Rudy

11
Theo
Rudy
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ARROW’S THEOREM 
AND APPROVAL VOTING
Activity 8

In the previous activities, you examined
various election decision procedures. Each
procedure is designed to choose one or more
candidates from a slate of three or more. You
found that each procedure has some
democratic features but can give different
results in considering the same voters with
the same preference schedules.

Kenneth Arrow, an economist, tackled
the problem of deciding the fairest election
procedure for determining the winner of an
election. He reached the conclusion that any
democratic voting system that ranks all the
candidates can give undemocratic results.
This was regarded as a “devastating
discovery,”1 and it led to his winning the
Nobel Prize in economics in 1972.

Arrow was interested in mathematically
analyzing election procedures that rank the
candidates. He made a list of important
features that determine the fairness of an
election procedure. Among the fairness
criteria that Arrow defined were the
following:

• There should be no dictator. A voter is an Arrow dictator when other people’s
preference rankings are irrelevant to the outcome. In other words, for any two
candidates A and B, there is no individual voter such that whenever he or she
prefers A to B, A is always preferred to B.

• If every voter prefers one candidate over another, then society should also prefer
that candidate.

• The election decision procedure used should not encourage voters to lie about
their true preferences.
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The last Arrow criterion may seem surprising. It is the sort of unexpected result that
shows up when mathematicians start to experiment with a problem.

The physical education class has decided to take a vote to decide which activity they
will have for PE for the next quarter. Their choices are aerobics, badminton, football, or
softball. They took a vote using ordinal ballots, and their preference schedules are shown
below.

Consider This . . .
1. Use Borda’s election decision procedure to determine which activity the PE class chose by

ranking the activities based on the number of points they got.

2. The ten students who wanted football as their first choice decided to try a different voting
strategy. Instead of voting their true preferences, they voted for the activities in this order:
football, softball, aerobics, and badminton. How did this strategy affect the results?

3. In response to the observation that his method is not strategy-proof, Borda commented,
“My scheme is only intended for honest men.”2 Describe in your own words the flaw that
you have discovered in Borda’s method. 

In all, Arrow listed five fairness criteria for an election method. Based on these criteria, Arrow
formulated and proved the following theorem in his book Social Values and Individual Choice:

There does not exist an election procedure which ranks for society three or more candidates based
on individual preferences, and which obeys the five fairness conditions.

Despite the gloomy prediction of Arrow’s theorem, social-choice theorists continue to try to invent
better voting methods that will overcome or minimize the flaws of known voting methods. One such
voting method is called approval voting. It is particularly well suited to elections with several
candidates. When you vote using approval voting, you give any candidate you approve of a vote. There
is no limit on how many candidates you can vote for. If you disapprove of a candidate, you don’t vote
for him or her. The winner is the candidate who receives the most approval votes. This system also

Number of students with
this preference schedule 12 5 10 11

Aerobics Badminton Football Softball

Badminton

Aerobics Aerobics AerobicsSoftball

Softball SoftballFootball

Football

Football

Badminton Badminton
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works well in elections in which more than one candidate can win, for example, in elections of new
members to the Baseball Hall of Fame or committee members to the American Mathematical Society.

4. The physical education class decided to use approval voting to choose the PE activity for
the next quarter. All of the students approve of their top two choices except the football
players. They only approve of football. Add up the approval votes each activity received
and record them in the table below. Which activity wins using approval voting?

5. Use approval voting to take a class vote on one of the issues you have voted on in the
previous six activities (pizza choice, night off from homework, or some other issue) and
analyze the results. 

• Are you satisfied with the result? 

• Does this method seem more or less fair than other methods you have explored so
far?

• Do you think approval voting is subject to the same problems that affect the results
using Borda’s method? Discuss any other problems that you think might affect the
fairness of the results when using approval voting.

Explore Further 
6. In Activity 6, Central City’s Ultimate Club voted on tee-shirt colors, resulting in the

following preference schedules. The club decided to have a revote using approval voting.
When the ballots were returned, everyone approved of their first choice. In addition, the 7
participants who chose fuchsia as their first choice also approved of teal, and the 25
participants who chose watermelon approved of every color except eggshell. Which color
will win using approval voting?

Aerobics
Badminton
Football

Activity
Number of 

approval votes

Softball
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7. Make a chart summarizing the election decision procedures you have studied in the
previous activities.

8. Create a scenario that involves using an election decision procedure. Which procedure
would you recommend be used for your scenario? Why?

9. Trade scenarios with one of your classmates. Each of you should analyze the other’s
scenario and recommend an election decision procedure. Compare your results when you
are done. Did you agree?

10. Based on what you have learned in these activities, what changes would you recommend
in the voting methods used in primary and general elections in the United States?

Research 
11. Do some research and find out more about approval voting. What are some of the

advantages and criticisms of this method?

Watermelon

20 18 23 25

Purple

Teal

Fuchsia

Eggshell

712

Watermelon

Watermelon

Watermelon

Watermelon

Watermelon

Teal

Teal

Teal

Teal Fuchsia

FuchsiaFuchsia

FuchsiaFuchsia

Purple

Purple

Purple

Purple

PurpleEggshell

Eggshell

Eggshell

Eggshell

Eggshell

Teal
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TEACHER’S NOTES
This activity introduces students to Arrow’s theorem, which states that any conceivable
democratic voting system can yield undemocratic results. Paul Samuelson, who later won
the Nobel Memorial Prize in economic sciences, described Arrow’s theorem:

The search of the great minds of recorded history for the perfect democracy, it turns
out, is the search for a chimera, for a logical self-contradiction. Now scholars all over
the world—in mathematics, politics, philosophy and economics—are trying to salvage
what can be salvaged from Arrow’s devastating discovery that is to mathematical
politics what Kurt Gödel’s 1931 impossibility-of-proving-consistency theorem is to
mathematical logic.3

In the Consider This section, students explore the criterion that an election decision
procedure should not encourage voters to lie about their true preferences. 

In the second part of the activity, students are introduced to approval voting. Have
your students take a vote using approval voting on one of the issues they have voted on in
a previous activity. 

Answers

Consider This . . . 
1. Badminton: 119

Football: 101

Softball: 86

Aerobics: 74

2. Football: 101

Softball: 96

Baseball: 88

Aerobics: 84

3. The students who prefer football can manipulate the vote by lying about their true
preferences.

4. Badminton wins when approval voting is used. This is the same result as the first result
using Borda’s method.
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5. Answers will vary. Approval voting suffers from the same flaw as Borda’s method in that it
is subject to strategic manipulation, but it is no more vulnerable to insincere voting than
other known methods.

Explore Further
6. Teal wins. 

7. Answers will vary. 

8. Answers will vary.

9. Answers will vary.

10. Answers will vary.

Research 
11. Answers will vary.

According to Brams and Fishburn,4 these are some of the advantages and criticisms of
approval voting:

Advantages

• It gives voters more flexible options. They can vote for a single favorite, or they
can vote for more than one choice.

• It could increase voter turnout because voters would feel as if they were better
able to express their preferences.

• It would help elect the candidate with the strongest overall support.

• It would support minority candidates. Voters often do not vote for their first
choice because they don’t think that candidate has a chance of winning.

• It is relatively insensitive to the number of candidates running.

Criticisms

• It could encourage the proliferation of candidates.

• It could undermine and possibly destroy the American two-party system.



Reference Notes
1. Hoffman, Archimedes’ Revenge (1988).

2. The New Palgrave: A Dictionary of Economics, p. 263.

3. Hoffman, op. cit.

4. Brams and Fishburn, Approval Voting (1983).
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APPORTIONMENT
Activity 9 

Issues related to
apportionment have been the
subject of many political
debates in the United States
as well as in other countries.
In the United States
government, there are two
representative bodies, the
Senate and the House of
Representatives. The Senate
consists of two senators from
each state, which means that
each state is represented
equally. The House of
Representatives is designed
to represent each state in
proportion to its population.
Since the ratification of the
Constitution, politicians have struggled with the problem of determining a fair method for
apportioning representatives from each state.

The students of Broad County faced the same problem when they were asked to help
design a representative body consisting of students from each high school in the county.
The students at Central City High School felt that this student council should represent the
students by population so that each student in the county would be represented equally.
The students at Outland High disagreed. They felt that there should be the same number of
representatives from each school on the countywide student council so that the schools
would be represented equally. The population of each school is given in the table below. 

This book will help you learn about apportioning the new all-county student council.

Central City High
East High
West High

Activity
Student

population

Hill High
Outland High
Sticks High

4464
3782
3284

422
1288
1842
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Consider This . . .
1. In which of the county schools do you think the students will prefer a system of

representation based on a set number of representatives per school? In which schools will
the students probably prefer a system of representation based on student populations?

2. What would you recommend as a system of representation for the Broad County student
council? Is there a way to please everyone?

The students finally decided that in their countywide student council the number of representatives from
each school should be proportional to the number of students in the school. The next problem they
have to solve is how to determine the number of representatives from each school that should be on
the council. 

The administration of the school district has determined that there should be 30 or fewer students on
the student council. 

Have each group in your class represent an apportionment committee for a different school in Broad
County. As a member of the apportionment committee, your job is to decide how you would apportion
the membership of the Broad County student council and prepare a report justifying your apportionment
method.

3. Describe your method of apportionment for the Broad County student council.

4. Explain why you think your method of apportionment is fair. Will all schools be satisfied?
Why or why not?

5. Present your results to the class and compare them with those of the other groups. Did all
groups propose the same method of apportionment?

Explore Further
6. Wide County, which is adjacent to Broad County, has only one high school. Because many

of the students at Wide High socialize with students from Broad County and are
interested in the same issues that affect their friends, they want their school to be
represented in the newly formed student council. There are 2478 students at Wide High.
The administration is not prepared to add any representatives to the student council.
However, they agree that Wide High should be allowed to join the Broad County student
council. Calculate the student population percentages if Wide High is included and make
recommendations for the number of representatives from each school. Describe the
method you use for apportionment. 

7. Which school’s apportionment is most affected by the addition of Wide High?
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8. Some of the students feel that the administration shouldn’t limit the size of the student
council. Experiment with different student council sizes to find a size that you would
recommend. Make a proposal to the administration on how to create a student council on
which membership is proportional to the population of the schools for the size of the
council you recommend. Do you feel that this is a more reasonable way to approach the
problem? Why or why not?

Calculator Exploration
9. If your calculator has a list function, you can enter the populations into a list and perform

calculations on all entries in the list simultaneously. Try this, and explain how you could
use this feature to help apportion the student council members.

Research
10. Read Article I, Section 2 of the U.S. Constitution. How did the framers of the Constitution

say the population of the United States should be represented? How did representation
relate to taxation? How do you think this affected debate about the fairness of
apportionment?

11. When and how was it decided that we should have a Senate and a House of
Representatives? What was the rationale behind the decision?

12. Find out what the electoral college is and how it works. Are all voters in the United States
represented equally in the electoral college? Why was it created?

13. What are the sizes of the House of Representatives and the Senate? Are these sizes fixed,
or are they allowed to grow in response to population changes?
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TEACHER’S NOTES
This activity is the first one dealing with apportionment. Students are introduced to the
basic principles of apportionment and are provided with some historical background. 
For the Consider This part of this activity, assign at least one group to represent each
school so that all schools have a group watching out for their best interests. You may have
an interesting debate over apportionment methods if the students take their parts to heart.
If students use a percentage method, they will have to struggle with what to do with
fractional representatives. They may also find that some schools are underrepresented.
The framers of the U.S. Constitution realized that they had to require that each state be
given at least one representative. Many students may devise a method very similar to
Hamilton’s method, which is presented in Activity 10.

Answers

Consider This . . .
1. The smaller schools would probably prefer a student government modeled after the

Senate, and larger schools would probably prefer a model like the House of
Representatives.

2. Answers will vary.

3–5.Answers will vary.

Explore Further
6. The apportionments students generate may vary. Ask them to describe their methods and

verify that their results fit the method.

7. Answers may vary, based on the method of apportionment the students use. In general,
the larger schools will experience larger percentage in apportionment changes by the
addition of the new school.

8. Answers will vary.
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Calculator Exploration
9. As the activities progress, students will be encouraged to use calculators to help with

computation. One way to do this activity using the list function in some of the TI
calculators follows.

Students can enter the population of each school in L1 and then use the one-variable
statistics function to find the sum of the populations.

Your students may be curious about the values the calculator displays. Encourage them to
explore what the various values mean. They may even want to try to use some of these
values in developing an apportionment method. Another way to find the sum of the
populations is to use the sum command under the LIST MATH menu.

Percentages can be calculated by entering L1/15082 into L2 (or L1/sum L1).

To see the results, press ENTER.

Students can then compute the apportionment using strict percentages by entering 
L2 • 30 in L3. They will still have to determine how to allocate fractions of
representatives.
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Research 
10. Article I, Section 2 of the Constitution states:

Representatives and direct Taxes shall be apportioned among the several States which may be
included within this Union, according to their respective Numbers, which shall be
determined by adding to the whole Number of free Persons, including those bound to
Service for a Term of Years, and excluding Indians not taxed, three fifths of all other
Persons. The actual Enumeration shall be made within three years after the first meeting
of the Congress of the United States, and within every subsequent Term of ten Years, in
such manner as they shall by Law direct. The Number of Representatives shall not exceed
one for every thirty thousand, but each State shall have at least one Representative.

11. The Constitutional Convention of 1787 formulated what is known as the “great
compromise.” This compromise established a representative branch of government
composed of two houses.

12. The electoral college was born from a distrust of ordinary citizenry. The electoral college
is a group of electors from each state. Electors were originally chosen by state legislatures,
but soon this was changed so that they are now chosen by popular vote. The number of
electors from each state is equal to the number of senators plus the number of
representatives for that state.

13. The House is made up of 435 representatives, and the Senate has 100 members. The
House size has varied in response to population growth. The Senate has also grown, but
each state always has just two senators.
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ALEXANDER HAMILTON’S
METHOD OF
APPORTIONMENT
Activity 10

Although the writers of the
U.S. Constitution required that
states be represented in
proportion to their
populations, they didn’t
prescribe a method for
accomplishing this task.
Because of this, there have
often been long and heated
debates over which method or
rule should be used for
apportioning members to the
House of Representatives.
Political concerns such as the
conflicts between northern and
southern states and between
industrial and agricultural
interests have influenced
apportionment decisions. Overall population growth and shifts in population from one
part of the country to another can also affect apportionment. Each state wants to protect
its own interests and ensure that it is fairly represented, but it is difficult to find a method
of apportionment that is fair to both large and small states. Many politicians have used
creative mathematics in their struggle to ensure that their own states are fairly represented.

The first apportionment method to emerge from the struggle was Hamilton’s method,
sometimes referred to as the method of greatest remainders. Alexander Hamilton, first
U.S. Secretary of the Treasury, first proposed this method in 1792. After a lengthy debate,
President George Washington vetoed the bill that would have made this method law.
Hamilton’s method was reintroduced in 1850 as the Vinton method and was adopted. It
was used to apportion the U.S. House of Representatives from 1850 until 1901, and today

During the founding of this nation there were many heated debates over which
apportionment method should be used.
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this method is used in Costa Rica, the Swiss National Council, and for the federal parts of
Sweden’s one house. It was also the method defined in the South African Interim
Constitution for its general election of April 1994.

Hamilton’s method works this way.

• First, choose a House size and a ratio of representation. (In the United States,
these decisions are made by the existing House and Senate.) The ratio of
representation determines how many people are to be represented by each
member of the House. The U.S. Constitution specifies that 30,000 is the minimum
ratio of people to representatives.

• The next step is to multiply the ratio of representation for each state by the
population of the state to find the ideal quota for each state. Often these ideal
quotas have fractional values, so they can’t be used as they are because the number
of representatives must be a whole number.

• Assign each state a number of seats equal to the integer part of its ideal quota. The
Constitution guarantees that each state will have at least one representative, so if a
state has an ideal quota less than one, assign it one representative.

• Find the sum of the number of seats assigned using the integer parts of the ideal
quotas. If the total number of seats is not equal to the number of seats allowed,
compare the fractional parts of each ideal quota. Assign the state with the largest
fractional part one more seat. If a state was given a seat because its ideal quota was
less than one, it doesn’t qualify for an additional seat. Repeat this process until you
have filled all the remaining seats. Thus, additional representatives are allotted to
states with the “greatest remainders.”

Hamilton and his followers proposed that the House of Representatives have 120 seats
(the total population divided by 30,000, the minimum ratio of representation specified in
the Constitution). 

To find out how many representatives Connecticut should have, they multiplied the
ratio of the state’s population to the total population by the size of the House to get the
ideal quota:

So in the first round, Connecticut would be assigned 7 representatives.

236 841
3 615 920

120 7 860
,

, ,
• .�
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1790 Census Results

Consider This . . . 
1. In the 1790 census table, complete the column labeled “Ideal quota.”

2. In the column labeled “Number of representatives (integer part),” record the
integer part of each ideal quota. Find the sum of the entries in the column. Did
this process fill all 120 seats in the House?

3. To fill the remaining seats (if there are any), find the state with the greatest
remainder and give it one more representative. Continue allocating extra seats
based on the descending order of the fractional part of the ideal quotas until you
have filled the House. 

4. Does this method seem like a fair way to apportion seats in the House? In which
states do you think the citizens would be satisfied with this method?

Population

55,540

Ideal quota

Number of
representatives
(integer part)

Number of
additional

representatives
(based on

greatest remainder)
7.860 7

Total number of
representatives

based on
Hamilton's

methodState
Connecticut

New Hampshire

Georgia
Kentucky

Delaware

Maryland
Massachusetts

North Carolina

New Jersey
New York

Pennsylvania
Rhode Island

Virginia
Vermont
South Carolina

236,841

70,835

68,446
432,879
353,523
331,589
179,570
141,822
475,327
278,514

68,705

630,560
85,533

206,236

Total
3,615,920

Integer sum Total number 
of additional
representatives

Total 
number of 
representatives
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Explore Further
Students in Broad County have been researching the historical background of
apportionment in the process of setting up their student council, and they have decided to
experiment with the methods proposed by early politicians in the United States. They are
going to try Hamilton’s method for apportionment. Assume that there will be 30 members
on the newly formed student council. 

5. Find the ideal quota for each school. To do this, multiply the ratio of the number
of students in the school to the total student population by the number of student
council members.

6. The Constitution requires that each state have at least one representative. Similarly, the
county school administration requires that each school have at least one representative. If
there are any schools that have an ideal quota less than one, apportion them one
representative.

7. Apportion the rest of the representatives using Hamilton’s method.

8. Based on your apportionment using Hamilton’s method, answer these questions.

• Does Hamilton’s method seem like a fair method for apportioning the seats for the
Broad County student council?

• How does Hamilton’s method compare with the method you developed in Activity 9?

• Does Hamilton’s method specifically benefit large or small schools? 

9. The students decided to find out how the representatives to the Broad County student
council would be apportioned when Wide High is allowed to join. Use Hamilton’s method
to find the new apportionment.

Student
Population

3782

Ideal quota

Number of
representatives
(integer part)

Additional
representatives

Total number of
representatives

using
Hamilton's

methodSchool
Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Total Integer sum Total number 
of additional
representatives

Total 
number of 
representatives
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10. Which schools are most affected by the addition of Wide High?

11. Do you think that the students in each school will be satisfied with the results of this new
apportionment?

Calculator Exploration
12. How will an apportionment be affected if you vary the number of seats to be assigned?

This question can lead to some rather tedious computations without the aid of a
calculator. You might want to try writing a calculator program that will automatically
apportion the seats or use the one your teacher provides. Then you can more easily
compare apportionments for different situations. 

Research 
13. Do some research to find out about the very first presidential veto.

14. Find out more about Alexander Hamilton. What other contributions did he make to U.S.
history? Which state did he come from? What effect did this have on his politics?

15. What role does the census play in representation in the United States? Who is counted for
apportionment purposes? How has this changed since 1790? How was the original census
taken?

Student
Population

3782

Ideal quota

Number of
representatives
(integer part)

Additional
representatives

Total number of
representatives

using
Hamilton's

methodSchool
Central City High

West High

Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Total Integer sum Additional
representatives

Overall total

Wide High 2478
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TEACHER’S NOTES
This activity introduces Alexander Hamilton’s method for apportionment. In the original
debate over apportionment, Hamilton’s method was rejected in the end in favor of
Jefferson’s method. This was not because of any mathematical flaws, but because Jefferson
argued that Hamilton’s method did not meet the requirements of the Constitution.
Jefferson believed that Hamilton’s method could be used only with a House size of 120
and therefore might not be a good one to use as the country grew.

Hamilton’s method does in fact have a flaw, which students explore in Activities 11
and 13. Student’s will have varying opinions about whether or not the method is fair.
Encourage them to discuss and even debate their opinions. 

If it is feasible, encourage students to use programmable calculators or spreadsheets.
Students will be using the same populations again in later activities; if they are using
calculators, they may find it convenient to store lists in one calculator and then transfer
lists as needed by linking to avoid having to re-enter a list each time it is needed. They
will need to reserve two lists for the schools’ populations—one with Wide High and one
without.

If students came up with Hamilton’s apportionment method in Activity 9, then some
of the questions in this activity may be redundant. However, the questions may lead
students toward a better definition of the method.

A calculator program for Hamilton’s method is provided following Activity 18.
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Answers

Consider This . . .
1–3.

4. Answers will vary.

Explore Further
5–7.See Table.

Population

55,540

Ideal quota

Number of
representatives
(integer part)

Number of
additional

representatives
(based on

greatest remainder)
7.860 7

Total number of
representatives

based on
Hamilton's

methodState
Connecticut

New Hampshire

Georgia
Kentucky

Delaware

Maryland
Massachusetts

North Carolina

New Jersey
New York

Pennsylvania
Rhode Island

Virginia
Vermont
South Carolina

236,841

70,835

68,446
432,879
353,523
331,589
179,570
141,822
475,327
278,514

68,705

630,560
85,533

206,236

Total
3,615,920

Integer sum Total number 
of additional
representatives

Total 
number of 
representatives

1.843
2.351
2.280
9.243

15.774
4.707
5.959

11.004
11.732
14.366

2.271
6.844

2.839
20.926

1
2
2
9

1
1

15
4
5

1
1
1

11
11 1
14

2
6
2

20

1
1
1

8
2
2
2
9

16
5
6

11
12
14

2
7
3

21

111

9 120
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8. Answers will vary.

9.

The sum of the student populations is 17,560. The ratio of representation will be
17,560/30 = 585.33 � 585.

10. Central City High, East High, Hill High, and Outland High each lose one representative.
The change in representation is spread evenly over large and small schools.

11. Answers will vary.

Student
Population

3782

Ideal quota

Number of
representatives
(integer part)

Additional
representatives

Total number of
representatives

using
Hamilton's

methodSchool
Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Total
15,082

Integer sum Additional
representatives

Overall total

8.879 8 1 9
7
6
3
2
1

1
1

7
6
4
3
1

7.523
6.532
3.664
2.562
0.839

27
3

30

Student
Population

3782

Ideal quota

Number of
representatives
(integer part)

Additional
representatives

Total number of
representatives

using
Hamilton's

methodSchool
Central City High

West High

Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Total
17,560

Integer sum Additional
representatives

Overall total

Wide High 2478

7.626
6.461
5.610
4.233
3.147

0.721
2.200

7
6

1
2

5
4
3

1

1

8
6

1

6
4
3
2

30
2

28
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Calculator Exploration
12. If some of your students know how to program their calculator, let them write a program

to compute results using Hamilton’s method. Blackline masters for all of the calculator
programs follow Activity 18.

Research
13. The first presidential veto occurred when George Washington vetoed the bill that would

have made Hamilton’s method the law for apportionment.

14. Alexander Hamilton lived from 1755 to 1804. He was the first U.S. Secretary of the
Treasury. He led a very colorful life. He was born in the British West Indies to parents who
were not married to each other at the time, and he died in a duel. In researching his life,
students may enjoy reading about the role he played in the Revolutionary War and the
creation of our government.

15. The U.S. Constitution specifies that an official census needs to be taken every ten years for
the purpose of apportioning representatives. Taking the first census was quite an ordeal,
and the methods varied from state to state. No attempt was made in the first census to
include the populations in the northwest and southwest territories. Although an attempt
was made to count all the inhabitants of the states, Native Americans were not included in
the count for apportionment since they were not taxed and couldn’t vote. For
apportionment purposes, slaves were counted as three-fifths of a person.





© 1 9 9 6  b y  K e y  C u r r i c u l u m  P r e s s  • D o  n o t  d u p l i c a t e  w i t h o u t  p e r m i s s i o n 77

THOMAS JEFFERSON’S
METHOD OF
APPORTIONMENT
Activity 11

The results of the first census
were reported to the U.S.
Congress in 1791, and the
apportionment struggles
began. The debate was heated.
There were two opposing
camps—Thomas Jefferson was
the leader of a group of
Republicans who were in
conflict with the Federalist
forces led by Hamilton. In the
end, Hamilton’s method was
rejected, not because of
mathematical flaws, but
because Jefferson successfully
argued that Hamilton’s method
did not meet the requirements
of the Constitution. “But
instead of such a single
common ratio, or uniform
divisor, as prescribed by the Constitution, the bill [Hamilton’s method] has applied two
ratios, at least to the different States . . . . And if two ratios be applied, then fifteen may,
and the distribution becomes arbitrary . . .”1

Jefferson’s method was adopted by both houses of Congress and signed into law on
April 14, 1792. The bill took only two days to pass the House, despite a last-ditch effort
to increase the size of the House. According to this bill, each member of the House of
Representatives would represent 33,000 people. 

One of the reasons Jefferson preferred his method was because it offered a method for
apportionment that was independent of the size of the House or the population of the

Jefferson argued that his method could be used far into the future.
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country. In contrast, he believed that Hamilton’s method applied only to an
apportionment of 120 seats, without stating any rule for determining an apportionment
that could be applied in future years. Jefferson’s method was used until 1841 and is still
in use in many countries, including Belgium, the Netherlands, Israel, Liechtenstein,
Finland, Germany, Brazil, and Austria. It was reinvented by a Belgian lawyer named Victor
d’Hondt in 1878 and is sometimes referred to as d’Hondt’s method, the Hagenbach-
Bischoff method, or the method of highest averages or greatest divisors.

Jefferson’s method works this way.

• First, choose the size of the House to be apportioned. (The size of the House of
Representatives is determined by the existing House and Senate.)

• Then find a value for x so that when the representative population of each state is
divided by x, the whole numbers that result when you round down sum to the
House size you want. Each state is assigned the whole number of representatives
that results when its quotient is rounded down except, of course, those states
whose value rounded down would be zero. In this case, assign the state one
representative. The trick is to find a divisor that works.

Eventually, Jefferson and his colleagues agreed that the House of Representatives
should contain 105 members, using the divisor 33,000.

1790 Census Population

Population

55,540

Jefferson
apportionment
with 105 seatsState

Connecticut

New Hampshire

Georgia
Kentucky

Delaware

Maryland
Massachusetts

North Carolina

New Jersey
New York

Pennsylvania
Rhode Island

Virginia
Vermont
South Carolina

236,841

70,835

68,446
432,879
353,523
331,589
179,570
141,822
475,327
278,514

68,705

630,560
85,533

206,236

3,615,920Total



A C T I V I T Y  1 1 T H O M A S  J E F F E R S O N ’ S  M E T H O D  O F  A P P O R T I O N M E N T

© 1 9 9 6  b y  K e y  C u r r i c u l u m  P r e s s  • D o  n o t  d u p l i c a t e  w i t h o u t  p e r m i s s i o n 79

To find the correct apportionment for each state, Jefferson found 

. 
(Remember that INT is the integer function. It means round down.) To find the 

apportionment for Connecticut, find . First divide 236,841 by 33,000,
which gives 7.177. Then find INT(7.177) which is 7. So Connecticut would receive 7
representatives.

Consider This . . .
1. Use the 1790 census results to compute the original apportionment using Jefferson’s

method. (Note: Your calculator can perform the INT function for you. You can also use
the list functions of your calculator or a spreadsheet.)

2. Find the sum of the numbers of representatives. Does it add to the original 105 members?

3. Was Jefferson’s method more favorable to large or small states? 

4. Which method do you prefer, Jefferson’s or Hamilton’s? Why?

5. Is 33,000 the greatest divisor that gives the apportionment above? Is there only one
divisor that works, or is there a range of divisors that will give the same apportionment?

The students at Central City High decide that they want to try Jefferson’s method and compare it to the
results of Hamilton’s method. To use Jefferson’s method, they have to find a divisor d so that when the
population of each school is divided by d, and the integer values of these quotients are found, the sum
of those values will give the desired number of students on the student council. (Remember, the
administration wanted 30 students on the student council.)

The students realized that they wanted to find a value of d so that 

= 30.

The first divisor they tried was 400. This worked out to

= 36.INT
4464

INT
3782

INT
3284

INT
1842

INT
1288

INT
422

400 400 400 400 400 400
�
�

�
�
! �

�
�
�
! �

�
�
�
! �

�
�
�
! �

�
�
�
! �

�
�
�

INT
4464

INT
3782

INT
3284

INT
1842

INT
1288

INT
422

d d d d d d
�
�

�
�
! �

�
�
�
! �

�
�
�
! �

�
�
�
! �

�
�
�
! �

�
�
�

INT
236,841
33 000,

�
�
�

�
�
	

INT
population

33 000,
�
�
�

�
�
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The result using a divisor of 400 was too high, so next they tried a divisor of 422. They wanted to be
sure that Sticks High had at least one representative.

= 33

The result using a divisor of 422 was still too low. Some of the other students remembered that
according to the Constitution each state has to have at least one representative, so they suggested
assigning a representative to any school that ends up with fewer than one representative. The students
agreed to this plan and decided to try a larger divisor.

After several tries, they found that the divisor 469 gave them a student council with 30 seats if they
assigned one representative to Sticks High. 

Explore Further
6. Use the results with a divisor of 469 to complete the following table.

7. In which schools do you think the students will be most and least pleased by the results
of Jefferson’s method? 

8. Compare the results using Jefferson’s apportionment method to the results of the
apportionment using Hamilton’s method.

• Which method seems fairer? 

• Which method do you prefer and why?

9. Use Jefferson’s method to determine the apportionment when representatives for Wide
High join the student council. Do this for a 30-member student council.

INT
4464

INT
3782

INT
3284

INT
1842

INT
1288

INT
422

422 422 422 422 422 422
�
�

�
�
! �

�
�
�
! �

�
�
�
! �

�
�
�
! �

�
�
�
! �

�
�
�

Student
Population

3782

Quotient

Jefferson
apportionment
with 30 seatsSchool

Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842



Calculator Exploration
It didn’t take the students long to realize what a nasty job apportionment must have been
before the days of calculators and computers! If you have a programmable calculator, you
might want to write a program to compute the apportionment using Jefferson’s method.
Or you can use the program your teacher provides.

10. Use the Jefferson program to find an apportionment for the student council with 32
seats. How does this apportionment compare to the apportionment you calculated in
Question 6 with 30 seats? Are any of the schools better or less well represented? Which
schools benefit from the larger council size?
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Student
Population

3782

Quotient
(d = )

Jefferson
apportionment
with 30 seatsSchool

Central City High

West High

Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Wide High 2478

Student
Population

3782

Quotient
(d = )

Jefferson
apportionment 
with 32 seatsSchool

Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842
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11. Use the Jefferson program to apportion seats for a 32-seat student council for the next
school year, when Wide High will join the student council. 

12. Experiment with different divisors and sizes of the student council until you find a size
and apportionment that you would want to recommend to the other students and
administration. Use the table below to record your results, and give some explanation of
why you prefer the apportionment you have chosen.

Research 
13. Research the early Democrat Republicans and Federalists. What was each group

interested in preserving? 

14. Research Thomas Jefferson. What other contributions did he make to United States
history?

Student
Population

3782

Quotient
(d = )

Jefferson
apportionment 
with 32 seatsSchool

Central City High

West High

Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Wide High 2478

Student
Population

3782

Quotient
(d = )

Jefferson
apportionment 
with      seatsSchool

Central City High

West High

Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Wide High 2478



TEACHER’S NOTES
Jefferson’s method is the first of the “divisor” methods, which involve adjusting the divisor
to make the apportionment work. For this method, Jefferson specified that one should
find a divisor that gives the desired apportionment. 

If possible, encourage your students to use calculators with list capabilities or a
computer spreadsheet. If you don’t have access to this technology, ask half your class to do
Question 10 and the other half Question 11. The two groups can share their results with
each other. Each student should complete Question 12 and develop his or her own
apportionment.

A calculator program for Jefferson’s method is provided following Activity 18.

Answers

Consider This . . .
1, 2.

3. Answers will vary. History has shown that Jefferson’s method tends to favor larger states.
Students will explore this further in later activities.

4. Answers will vary.

A C T I V I T Y  1 1 T H O M A S  J E F F E R S O N ’ S  M E T H O D  O F  A P P O R T I O N M E N T

© 1 9 9 6  b y  K e y  C u r r i c u l u m  P r e s s  • D o  n o t  d u p l i c a t e  w i t h o u t  p e r m i s s i o n 83

Population

55,540

Jefferson
apportionment
with 105 seatsState

Connecticut

New Hampshire

Georgia
Kentucky

Delaware

Maryland
Massachusetts

North Carolina

New Jersey
New York

Pennsylvania
Rhode Island

Virginia
Vermont
South Carolina

236,841

70,835

68,446
432,879
353,523
331,589
179,570
141,822
475,327
278,514

68,705

630,560
85,533

206,236

3,615,920

7
1
2
2
8

14
4
5

10
10
13

2
6
2

19
105Total
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5. The range of divisors that work is 32,139–33,158.

Explore Further
6.

7. Answers will vary.

8.

There may be varying opinions as to which method is fairer. Encourage students to discuss
this. Activity 13 has more discussion on the fairness of the methods, and criteria will be
developed. Encourage students to come up with their own criteria for fairness now.

9. The range of divisors that work is 541–547.

Student
Population

3782

Quotient

Jefferson
apportionment
with 30 seatsSchool

Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

9.518
8.064
7.002
3.928
2.746

.09

9
8

1
2
3
7

Hamilton
apportionment

Jefferson
apportionment
with 30 seatsSchool

Central City High

West High
Hill High

East High

Outland High
Sticks High

9
8

1
2
3
7

9
7

1
3
4
6

Student
Population

3782

Quotient

Jefferson
apportionment
with 30 seatsSchool

Central City High

West High

Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Wide High 2478

8.161
6.914
6.004

0.771
2.355
3.367

4.53

8

1
2
3
4
6
6



Calculator Exploration
10. The range of divisors that work is 430–446.

The largest school and a midsize school each gained a representative.

11. The only divisor that works is 496.

12. Answers will vary.

Research 
13. Hamilton and Jefferson were the leaders of the first two political parties in the United

States. At first, the hope had been to establish a government of superior persons who
would be above party, but Hamilton and Jefferson soon found that they needed supporters
of their policies. In foreign affairs, Hamilton and the Federalists wanted to keep close ties
with England. Jefferson and the Democrat Republicans were more in favor of
strengthening the old attachment to France. Hamilton and Jefferson feuded from 1791 to
1793, attempting to drive each other out of the cabinet. They used party newspapers to
attack each other and their policies, and each tried to turn President Washington against
the other.
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Student
Population

3782

Quotient

Jefferson
apportionment 
with 32 seatsSchool

Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

10.262 10
8.6943
7.5494
4.2345
2.9609
0.97011

8
7
4

1
2

Student
Population

3782

Quotient

Jefferson
apportionment 
with 32 seatsSchool

Central City High

West High

Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

9 9
7.625
6.621

3.7137
2.5958
0.85051

7
6

3

1
2

Wide High 2478 4.996 4
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14. Thomas Jefferson lived from 1743 to 1826. He was the third president of the United
States, a principal author of the Declaration of Independence, and an extremely influential
political philosopher. 

Reference Note
1. Thomas Jefferson. “Opinion on the Bill Apportioning Representation.” In The Works of

Thomas Jefferson, ed. Paul Leicester Ford (New York and London: G. P. Putnam’s Sons,
1904), 6: 463–464.
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DANIEL WEBSTER’S
METHOD OF
APPORTIONMENT
Activity 12

Jefferson’s method was used to
apportion the House of
Representatives from 1792 to
1841, but by the 1830s
politicians were once again
struggling over the issue of
apportionment. John Quincy
Adams, at the time a
representative from
Massachusetts and a former
president, wrote in his
memoirs:

I passed an entirely
sleepless night. The
iniquity of the
Apportionment bill, and
the disreputable means by
which so partial and unjust
a distribution of the
representation had been
effected, agitated me so
that I could not close my
eyes.1

Mr. Adams was referring to a bill authored by James K. Polk of Tennessee, which used
Jefferson’s method of apportionment with an increased divisor of 47,700. Polk’s bill
improved the representation of several key states but hurt the representation of some of
the earliest New England states.

The problem stemmed from the growth in the U.S. population. The country had

Thank goodness Daniel Webster and the founders were not proficient at calculus.
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grown from 15 states and a census population of 3,615,920 in 1790 to a census
population of 12,866,020 in 24 states in 1830. The size of the House of Representatives
had steadily increased to 240 members, and the divisor had changed only from 33,000 to
47,700.

There was a flurry of discussion about apportionment, and many new methods were
proposed and discarded as unfair. Historical evidence showed that Jefferson’s method
favored the larger states. Many people and politicians thought it was time for a new
method to be developed.

The method that emerged was developed by Daniel Webster in 1832. Webster referred
to the Constitution and to the arguments of Washington, Hamilton, and Jefferson from
the first discussion of apportionment. He also received advice from mathematicians
around the country and in the end proposed this method:

Let the rule be that the population of each State be divided by a common divisor, and,
in addition to the number of members resulting from such division, a member shall
be allowed to each State whose fraction exceeds a moiety of the divisor.2

Webster’s method is similar to Jefferson’s method in that a divisor that provides the
desired House size must be selected. But instead of always rounding down, as in
Jefferson’s method, the fractions are rounded according to the standard convention—
down for fractions less than 0.5, and up for fractions of 0.5 and above.

The following table shows the population of nine selected states in 1830.

Webster first proposed using this method with a divisor of 49,800. To find the
apportionment for New York, he divided 1,918,578 by 49,800 to get 38.526, which is
then rounded to 39.

Consider This . . .
1. Based on the populations listed in the table, apportion the states’ representatives using

Webster’s method.

Population

1,348,072

Quotient
(population/49,800)State

New York

Missouri

Kentucky
Vermont

Pennsylvania

Louisiana
Illinois

Mississippi
Delaware

1,918,578

621,832

11,931,000
75,432

110,358
130,491
157,147
171,904
280,657

38.526

Total population

Apportionment
39



2. Does this method seem fair? Does it seem to favor large or small states?

3. Which method do you prefer: Jefferson’s, Hamilton’s or Webster’s? Why?

4. It may seem difficult to express Webster’s method in a formula, but there is a slight trick
to it. Round each number in a–d using the standard convention.

a. 3.124 b. 4.00 c. 5.523 d. 8.99

Now for each result, n, find INT(n + 0.5). What do you notice?

The students at Central City High have decided to give Webster’s method a try. They realize that they
want to find a divisor d so that when the population of each school is divided by d and the resulting
quotient is rounded, the sum of all the rounded quotients will equal 30. They realize that they could
write this as the equation

= 30.

Some of the students decided to start with the divisor 469, which worked for Jefferson’s method.

A total of 33 is too large. What divisor would you try next? (You may find it useful to use the list
function in your calculator or a computer spreadsheet!)

5. Find a divisor that will satisfy the equation above for the student council apportionment.

INT INT INT INT INT INT
4464

0 5
3782

0 5
3284

0 5
1842

0 5
1288

0 5
422

0 5
d d d d d d

! ! ! ! ! ! ! ! ! ! !" # " # " # " # " # " #. . . . . .

A C T I V I T Y  1 2 D A N I E L  W E B S T E R ’ S  M E T H O D  O F  A P P O R T I O N M E N T

© 1 9 9 6  b y  K e y  C u r r i c u l u m  P r e s s  • D o  n o t  d u p l i c a t e  w i t h o u t  p e r m i s s i o n 89

Student
Population

3782

Webster 
apportionment
with 30 seats

(d = 469)School
Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Total

10
8
7
4
3

33
1



D A N I E L  W E B S T E R ’ S  M E T H O D  O F  A P P O R T I O N M E N T A C T I V I T Y  1 2

90 © 1 9 9 6  b y  K e y  C u r r i c u l u m  P r e s s  • D o  n o t  d u p l i c a t e  w i t h o u t  p e r m i s s i o n

6. Complete the table below, showing the apportionment that results using 
Webster’s method.

Explore Further
7. Use Webster’s method to apportion seats for the student council with 32 seats. How does

this apportionment compare to the apportionment you calculated above with 30 seats?
Are any of the schools better or less well represented? Which schools benefit from the
larger council size?

8. Use Webster’s method to apportion seats for the student council with 30 seats when Wide
High joins the council. 

Student
Population

3782

Webster 
apportionment
with 30 seatsSchool

Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Student
Population

3782

Webster 
apportionment
for 32 seatsSchool

Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Student
Population

3782

Webster 
apportionment
with 30 seatsSchool

Central City High

West High

Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Wide High 2478
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The Method of John Quincy Adams
Choose the size of the house to be apportioned. Find a divisor d so that the smallest
whole numbers containing the quotients of the states sum to the required total. Give to
each state its whole number.

9. John Quincy Adams also proposed a method for apportionment that is similar to
Jefferson’s method except that the quotients are always rounded up. Experiment with his
method using the data from Broad County.

10. Does Adams’s method favor large or small populations?

Calculator Exploration
11. The students at Central City High soon realized that Webster’s method, like Jefferson’s

method, was perfect for their programmable calculators. Write your own program or use
the program provided by your teacher.

Student
Population

3782

Adams
apportionment
for 30 seats

(d = )School
Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Adams
apportionment
for 32 seats

(d = )

Student
Population

3782

Adams
apportionment
for 30 seats

(d = )School
Central City High

West High

Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Adams
apportionment
for 32 seats

(d = )

2478Wide High
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12. Use Webster’s method to create your own apportionment of the student council.
Experiment with different divisors and sizes of the council until you find a size and
apportionment you would want to recommend to the other students and the
administration. Use the table below to present your results, and give some explanation of
why you prefer the apportionment you have chosen.

13. Adams’s method is also easy to use with a programmable calculator. Create a program of
your own or use the program your teacher provides to create your own apportionment of
the student council. Experiment with different divisors and sizes of the council until you
find a size and apportionment you would want to recommend to the other students and
the administration. Use the table below to present your results, and give some
explanation of why you prefer the apportionment you have chosen.

Research 
14. By the year 1832, Daniel Webster was regarded by many people as the greatest

man in America, although others called him Black Dan. Do some research to
discover more about him. 

15. Do some research and learn about John Quincy Adams. What contributions did
he make to early American history?

Student
Population

3782

Webster 
apportionment
with       seatsSchool

Central City High

West High

Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Wide High 2478

Student
Population

3782

Adams
apportionment
with       seatsSchool

Central City High

West High

Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Wide High 2478
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TEACHER’S NOTES
In this activity, students explore the apportionment method of Daniel Webster. His
method seems the most intuitively fair of the divisor methods, since it involves rounding
in the conventional way.

Questions 9 and 10 investigate the method of John Quincy Adams. These questions
can be used as an extension of the activity, or they can be skipped. 

Encourage students to use calculators for this activity. Many calculators have a round
function that will round numbers according to the standard convention. If students are
working with programmable calculators or a calculator spreadsheet, they can input the
populations in one list, compute the quotient in a second, round it in a third, and then
use the calculator or spreadsheet functions to find the sum of this last list. It is truly
amazing that early politicians computed these apportionments without the aid of
calculators and computers. We have to admire their perseverance.

Calculator programs for Webster’s method and Adams’s method are provided following
Activity 18.

Answers

Consider This . . .
1.

2. Students will have their own opinions as to which method is fairest. 

3. Answers will vary.

Population

1,348,072

Quotient
(population/49,800)State

New York

Missouri

Kentucky
Vermont

Pennsylvania

Louisiana
Illinois

Mississippi
Delaware

1,918,578

621,832

11,931,000
75,432

110,358
130,491
157,147
171,904
280,657

38.526

Total population

Apportionment
39

27.07
12.487
5.636
3.452

1.5157
2.216
2.619
3.156

27

2

3
3
3
6

12

2
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4. a. 3 b. 4 c. 6 d. 9

In Question 4, students discover that the formula INT(n + 0.5) gives the value of n
rounded by standard convention. Some calculators also have a round function.

5. Any divisor between 506 and 515 works. 

6.

If students have a list function on their calculators, they can simplify their work by
entering the populations into one of the lists and performing the calculations in 
another list.

Explore Further
7. To apportion a council with 32 seats, use a divisor of 471. East High and West High each

gain one seat.

Student
Population

3782

Webster 
apportionment
with 30 seatsSchool

Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

9
7
6
4
3
1

Student
Population

3782

Webster 
apportionment
for 32 seatsSchool

Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

9
7
6
4
3
1
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8. A divisor of 585 gives the following apportionment:

9. The range of divisors is given for each apportionment. 

10. Adams’s method for apportionment favors small populations.

Student
Population

3782

Webster 
apportionment
with 30 seatsSchool

Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Student
Population

3782

Adams
apportionment
for 30 seats
(548 - 557)School

Central City High

West High
Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Adams
apportionment
for 32 seats
(496 - 540)

9 9
7 8
6 7
4 4
3 3

11

Student
Population

3782

Webster 
apportionment
with 30 seatsSchool

Central City High

West High

Hill High

East High

Outland High
Sticks High

4464

3284

422
1288
1842

Wide High 2478
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Calculator Exploration
11. The program is on a blackline master following Activity 18.

12. Answers will vary.

13. Answers will vary.

Research 
14. Daniel was one of the most prominent politicians of his time and a brilliant orator. He

was the foremost advocate of American nationalism of his era. He served in the House
and in the Senate and became Secretary of State in July 1850 under President Millard
Fillmore. He was “Black Dan” to those who saw him as a compromiser on matters of
principle, for example, his willingness to compromise on the issue of slavery in order to
preserve the Union. His personal life also contributed to his “Black Dan” image. He lived
extravagantly, was always in debt, and was saved from bankruptcy by wealthy New
England supporters who paid his bills.

15. John Quincy Adams was the sixth president of the United States. He served in the
Massachusetts Senate as well as the U.S. Senate. He was also the American ambassador to
Holland, Prussia, and Russia. He served as Secretary of State under James Monroe. After
his presidential term, he returned to the House of Representatives where he served for
nine consecutive terms. Adams died on February 23, 1848; he was the last surviving
statesman of the American Revolution. 

Reference Notes
1. John Quincy Adams. The Memoirs of John Quincy Adams, ed. Charles Francis Adams

(Philadelphia: J. B. Lipponcott & Co., 1876), 8:474.

2. Daniel Webster. The Writings and Speeches of Daniel Webster, National Edition (Boston:
Little, Brown & Co., 1903), 6:120.
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IS IT FAIR?
Activity 13

How do you decide
whether a method for
apportioning
representatives is fair? In
the last few activities, you
examined the methods of
Hamilton, Jefferson,
Webster, and Adams. You
used each method to
apportion seats for the
Broad County student
council, and in each
activity you were asked if
you thought the method
was fair. Which method
do you prefer? Which
method do you think is
fairest? How do you
decide?

These questions have
plagued politicians as they
have tried to determine which apportionment method to use. Daniel Webster pointed out
that no method can apportion representatives precisely and perfectly. However, he also
maintained that whether a method was fair or not was not just a matter of opinion, but a
mathematical certainty.

One of the first measures used by Hamilton’s followers to judge fairness was the “Rule
of Three.” It was called this because three quantities are involved: the total population, a
state’s population, and the number of representatives to be apportioned. The ideal quota
for each state is found by dividing the state’s population by the total population and then
multiplying by the total number of representatives to be apportioned. When you use
Hamilton’s method for apportionment, you calculate each state’s ideal quota, which will
stay constant for any given House size, regardless of the apportionment method you use.
This ideal quota is different from the quantity you get when you divide a state’s population
by the particular divisor you are using in an apportionment method, which is what makes
the divisor methods different from Hamilton’s method.

Once you have found the quota for each state, compare the apportionment for each
state to its quota. If a method satisfies quota, each state will get at least as many
representatives as its ideal quota rounded down and no more representatives than its ideal
quota rounded up. For example, if a state’s ideal quota is 13.459, then it should receive no

“All I did was ask it to calculate a fair apportionment method.”
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fewer than 13 representatives and no more than 14 representatives. If this state receives
fewer than 13 representatives or more than 14 representatives, then the apportionment
method used violates quota. Some methods never violate quota, while others occasionally
will. 

The students of Central City High decided that it was time for a field trip to research
the problem of finding a fair method of apportionment to the student council. They
planned a trip to their sister school in Dale County, which had just set up a student
council. The students at Valley High were eager to share their data.

Consider This . . .
1. Compute the ratio of representation for each council size in the table below. To do this,

divide each population by the number of seats.

2. Compute the ideal quotas for each council size in the table below. To do this, divide each
population by the total population (26,000) and multiply by the number of members on
the council.

Dale County Student Population by School

School Student population
North High 9061
South High
Valley High
Meadow High
Ridge High

Total

7179
5259
3319
1182

26,000

Number of seats
Ratio of
representation

26 27 40

School
North High
South High
Valley High
Meadow High
Ridge High

Ideal quota for
26 seats

Ideal quota for
27 seats

Ideal quota for
40 seats

9.061
7.179

5.259
3.319
1.182

9.4095
7.4551

5.4613
3.4467
1.2275

13.94
11.045

8.0908
5.1062
1.8185
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3. Use Hamilton’s method to calculate the number of representatives each school will have in
a student council with 26 seats, 27 seats, and 40 seats.

4. Does it appear that Hamilton’s method satisfies quota? Will Hamilton’s method always
satisfy quota? Why or why not?

5. Do you think that the students of Meadow High will be satisfied with the apportionment
of 27 seats? Why or why not?

6. The problem faced by Meadow High when the size of the council was increased from 26
to 27 is called the Alabama paradox. Explain this paradox in your own words. 

7. If the student council size remains fixed at 26 seats as the school district grows, will the
apportionment change as the number of students increases? Assume that the proportion of
students at each school remains constant.

Explore Further
8. Use Jefferson’s method to apportion seats for the Dale County student council.

• Does Jefferson’s apportionment appear to satisfy quota?

• Do these results seem to be fair? Do any problems arise from the increase in size of
the student council?

• If the student council size remains fixed at 26 seats as the school district grows,
will the apportionment change as the number of students increases? Assume that
the proportion of students at each school remains constant.

School
North High
South High
Valley High
Meadow High
Ridge High

26 seats 27 seats 40 seats

School
North High
South High
Valley High
Meadow High
Ridge High

26 seats
(d = ? )

27 seats
(d = ? )

40 seats
(d = ? )

Apportionment Using Jefferson's Method
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9. Use Webster’s method to apportion seats for the Dale county student council.

• Does Webster’s apportionment appear to satisfy quota?

• Do these results seem to be fair? Do any problems arise from the increase in size of
the student council?

• If the student council size remains fixed at 26 seats as the school district grows,
will the apportionment change as the number of students increases? Assume that
the proportion of students at each school remains constant.

10. Use Adams’s method to apportion seats for the Dale County student council.

• Does Adams’s apportionment appear to satisfy quota?

• Do these results seem to be fair? Do any problems arise from the increase in size of
the student council?

• If the student council size remains fixed at 26 seats as the school district grows,
will the apportionment change as the number of students increases? Assume that
the proportion of students at each school remains constant.

School
North High
South High
Valley High
Meadow High
Ridge High

26 seats
(d = ? )

27 seats
(d = ? )

40 seats
(d = ? )

Apportionment Using Webster's Method

School
North High
South High
Valley High
Meadow High
Ridge High

26 seats
(d = ? )

27 seats
(d = ? )

40 seats
(d = ? )

Apportionment Using Adams's Method
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Calculator Exploration
11. The students at Central City High have also been trying to collect information on the

Internet to help them make their decision on how to apportion the student council. They
found some interesting information from the Four Corners Water District. Use Webster’s
method and your calculator to apportion seats for the 35-seat water board in Four
Corners Water District.

• Compute the ideal quota for each part of the county. Does Webster’s method satisfy
quota in this case? 

• Does this seem like a fair apportionment to you? Why or why not?

County

South East County (SE)

North West County (NW)

North East County (NE)
South West County (SW)
Total

Population
Number of

representatives
(d = ? ) Ideal quota

70,653

117,404

210,923
1,194,456

1,593,436



I S  I T  F A I R ? A C T I V I T Y  1 3

102 © 1 9 9 6  b y  K e y  C u r r i c u l u m  P r e s s  • D o  n o t  d u p l i c a t e  w i t h o u t  p e r m i s s i o n

TEACHER’S NOTES
This activity explores some criteria for fairness, namely, quota and the Alabama paradox.
Students will learn more about the Alabama paradox and other paradoxes in Activity 14.
Be sure students understand what the term “paradox” means.
This activity can be used in several ways. 

• You can let students compute the apportionments using the methods from the
three previous activities. By using the four methods in the same activity, students
will become more comfortable with them, and will be better able to compare and
contrast them. If students are using calculator programs, finding the
apportionments will not be too time-consuming.

• If the mathematics of computing the apportionments is overwhelming for your
students, you can provide the divisors for each apportionment. Write the divisors
on the master before you copy the activity so that each student will have them on
hand.

• Another alternative is to provide the students with a copy of the blackline master
following this activity. This master contains all the apportionments necessary to
complete the activity. 

Consider This . . .
1.

2.

If students have calculators with a list function, then this calculation is fairly simple. Enter
the school populations in one list, and in another list divide the first list by 26,000. To get
the quota, you can multiply the entries in the second list by the required council sizes. 

Number of seats
Ratio of
representation

26 27 40

1000:1 963:1 650:1

School
North High
South High
Valley High
Meadow High
Ridge High

Ideal quota for
26 seats

Ideal quota for
27 seats

Ideal quota for
40 seats

9.061
7.179

5.259
3.319
1.182

9.4095
7.4551

5.4613
3.4467
1.2275

13.94
11.045

8.0908
5.1062
1.8185
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3. Apportionment Using Hamilton’s Method

4. Hamilton’s method satisfies quota for all student council sizes. It will, in fact, always
satisfy quota.

5. Students at Meadow High may feel that for 27 seats the method is unfair. Though the
student council has increased in size and there have been no changes in the population,
Meadow High has lost a seat.

6. The Alabama paradox arises when the size of the House increases and this increase in size
causes a state to lose a seat. It is discussed in more detail in Activity 14. Encourage your
students to explore further and discover how this could happen.

7. Hamilton’s method is not affected by a rise in representative population. This property of
Hamilton’s method can be proved as follows:

Proof: Suppose the ideal quota for each state is where xi is the population in each state, x is
the total population, and s is the number of seats. If the population increases or decreases by a
factor k, then the new total population is kx. If the relative proportion of the population for each
state remains constant, then the new population of each state is given by  • kx = kxi.
Therefore, the new ideal quota , which is the same as the original ideal quota.

Explore Further
8. Apportionment Using Jefferson’s Method

• Jefferson’s method doesn’t satisfy quota for a council of 40 seats. The number of
representatives for North High should be either 13 or 14.

School
North High
South High
Valley High
Meadow High
Ridge High

26 seats 27 seats 40 seats
9
7
5
4
1

9
8
6
3
1

14
11

8
5
2

School
North High
South High
Valley High
Meadow High
Ridge High

26 seats
(d = 906)

27 seats
(d = 897)

40 seats
(d = 600)

10
7
5

3
1

10
8
5

3
1

15
11
8

5
1

x
x si

x
x

i

kx
kx

i s = x
x

i s
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• Answers will vary. It doesn’t appear that Jefferson’s method has a problem such as
the Alabama paradox.

• The apportionment stays the same as the population increases. This can be proved
as follows: 

Proof: Consider the equation (1) � INT = s where xi is the population in the ith state and d
is a divisor that gives the required House size of s seats. Suppose the total population changes to
kx; then the population in the ith state changes to kxi. Therefore, you need to find a divisor d2

so that � INT , but a comparison of this equation with equation (1) above shows that
d2 must be equal to kd1. Therefore, the allotment for each state remains constant, namely,
INT .

9. Apportionment Using Webster’s Method

• In this example, Webster’s method does appear to satisfy quota. In a later problem,
students will discover that Webster’s method doesn’t always satisfy quota.

• It appears that Webster’s method is fair. There are no problems associated with
increased council size.

• The Webster apportionment will stay the same as the population grows. The proof
is similar to the proof for the Jefferson apportionment.

10. Apportionment Using Adams’s Method

• Adams’s method appears to satisfy quota, but there are cases where it does not. 

• Answers will vary. Adams’s method is not subject to the Alabama paradox.

School
North High
South High
Valley High
Meadow High
Ridge High

26 seats
(d = 957)

27 seats
(d = 956)

40 seats
(d = 671)

9
8

5
3
1

9
8

6
3
1

14
11

8
5
2

School
North High
South High
Valley High
Meadow High
Ridge High

26 seats
(d = 1110)

27 seats
(d = 1100)

40 seats
(d = 690)

7

5
3

9

2

7

5
4

9

2

11
8
5

14

2

x
d

i
1

x
d

i = s 1k

x
d

i
1
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• The apportionment will remain constant.

Calculator Exploration
11.

• No, it does not satisfy quota. South West County has fewer representatives than its
ideal quota rounded down.

• Answers will vary.

County
South East County (SE)

North West County (NW)

North East County (NE)
South West County (SW)
Total

Population

Number of
representatives
(d = 46,850) Ideal quota

70,653

117,404

210,923
1,194,456

1,593,436

2

3

5
25

35

1.5519

2.5788

4.6329
26.236
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Apportionments for Activity 13

1. Ratio of representation

2. Ideal quota

3. Apportionment using Hamilton’s method

8. Apportionment using Jefferson’s method

Number of seats
Ratio of
representation

26 27 40

1000:1 963:1 650:1

School
North High
South High
Valley High
Meadow High
Ridge High

Ideal quota for
26 seats

Ideal quota for
27 seats

Ideal quota for
40 seats

9.061
7.179

5.259
3.319
1.182

9.4095
7.4551

5.4613
3.4467
1.2275

13.94
11.045

8.0908
5.1062
1.8185

School
North High
South High
Valley High
Meadow High
Ridge High

26 seats 27 seats 40 seats
9
7
5
4
1

9
8
6
3
1

14
11

8
5
2

School
North High
South High
Valley High
Meadow High
Ridge High

26 seats
(d = 906)

27 seats
(d = 897)

40 seats
(d = 600)

10
7
5

3
1

10
8
5

3
1

15
11
8

5
1
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9. Apportionment using Webster’s method

10. Apportionment using Adams’s method

11. Apportionment using Webster’s method

School
North High
South High
Valley High
Meadow High
Ridge High

26 seats
(d = 957)

27 seats
(d = 956)

40 seats
(d = 671)

9
8

5
3
1

9
8

6
3
1

14
11

8
5
2

School
North High
South High
Valley High
Meadow High
Ridge High

26 seats
(d = 1110)

27 seats
(d = 1100)

40 seats
(d = 690)

7

5
3

9

2

7

5
4

9

2

11
8
5

14

2

County
South East County (SE)

North West County (NW)

North East County (NE)
South West County (SW)
Total

Population

Number of
representatives
(d = 46,850) Ideal quota

70,653

117,404

210,923
1,194,456

1,593,436

2

3

5
25

35

1.5519

2.5788

4.6329
26.236
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PARADOXES OF
APPORTIONMENT
Activity 14

In Activity 13, you discovered
that there are problems with the
apportionment methods you
have explored so far. One of
these problems is the failure to
satisfy quota, and another is the
Alabama paradox.

Following the 1850 census,
Hamilton’s apportionment
method was enacted. It is
usually referred to as Vinton’s
Method of 1850. The Alabama
paradox was first identified after
the 1870 census. With 270
members in the House, the state
of Rhode Island was allotted
two members under Hamilton’s
method, but when the House
size was increased to 280,
Rhode Island was given only
one seat. Following the 1880
census, C. W. Seaton, the chief clerk of the United States Census Office, computed
apportionments using Hamilton’s method for all sizes for the House of Representatives
between 275 and 350 members. Seaton wrote a letter to Congress showing how Alabama
was allotted eight representatives with a House size of 299 but only seven representatives
when the House size was changed to 300. Finally, a House size of 325 was chosen because
for that number Webster’s and Hamilton’s methods yielded the same results. After the
1900 census, compromise was no longer possible. Maine and Colorado, among other
states, were affected by the Alabama paradox. In 1901, three decades after the Alabama
paradox was first noticed, Hamilton’s method was finally abandoned in favor of Webster’s
method. Congress seemed to be able to tolerate an occasional violation of quota, but it
could not accept a method that allowed for the Alabama paradox.

Congress did not react to the increasing problems of apportionment until C. W.
Seaton discovered the “Alabama paradox.”
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In all the examples you explored in Activity 13, you found that Hamilton’s method
satisfied quota. In fact, Hamilton’s method will always satisfy quota, but, as you
discovered, it is subject to the Alabama paradox. You encountered this problem when you
increased the size of the student council from 26 to 27 seats. The total number of
students didn’t change, the proportion of students in Meadow High didn’t change, but
Meadow High got fewer seats on a larger council. 

You also discovered that Jefferson’s and Webster’s methods occasionally fail to satisfy
quota. However, they do not seem to be subject to the Alabama paradox.

Consider This . . .
1. Create a convincing argument that divisor methods such as Jefferson’s and Webster’s avoid

the Alabama paradox. It might be helpful to consider what happens to the divisor, d, and
the quotient of each state (the representative population divided by d) as the size of the
Congress increases.

2. In 1901, when the U.S. Congress rejected Hamilton’s apportionment method and adopted
Webster’s method, it set a precedent that methods allowing the Alabama paradox cannot
be used for apportionment. However, Congress was willing to let a method that might
violate quota be used. Why do you think they would allow this?

It turns out that there are other paradoxes of apportionment. One, called the population paradox,
occurs when changes in apportionment do not accurately reflect changes in population. This happened
with Hamilton’s method between 1900 and 1901. Virginia was growing much faster than Maine. The
population of Virginia increased by 19,767 while Maine’s population increased by 4648. Furthermore,
Virginia’s rate of growth relative to Maine’s was almost 60% greater. However, even though Virginia
became proportionally larger than Maine, Hamilton’s method resulted in taking a seat from Virginia
and giving it to Maine.

Yet another paradox, called the new states paradox, occurs with Hamilton’s method. This paradox
appeared when Oklahoma became a state in 1907. Oklahoma was entitled to about five seats in the
House, but when these five seats were added and the total number of seats was reapportioned using
Hamilton’s method, New York would have had to give up a seat to Maine, even though there was no
change in the population of Maine, New York, or any other state! This paradox can also occur when a
state secedes from the Union.

You may be wondering if there is any method that avoids these paradoxes and satisfies quota. The
answer is that no divisor method satisfies quota, in part because forcing all states to stay within quota
does not affect large states in the same way it does small states. A difference of one seat has less
effect on a larger state’s proportion of representation than that of a smaller state. 

Since there was no perfect method available, Webster’s method was adopted as a compromise.
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Historical evidence has since shown that Webster’s method is the least likely to violate quota, and
mathematics demonstrates that Webster’s method is the one and only divisor method that stays near
the quota. 

3. Your group is the apportionment committee for one of the departments of SuperTec, a
factory specializing in computer products for use in schools. SuperTec is owned by its
employees. Each employee owns an equal share in the company and therefore must be
equally represented in the leadership of the company. SuperTec is made up of four
departments: production, development, sales, and service. Each department elects
representatives to the board of trustees.

Formulate a proposal for the apportionment of SuperTec’s board of trustees. Use the
questions below as a guide when you are formulating your proposal.

• How big should the board of trustees be? Why?

• Which apportionment method do you recommend using? Why? Are you going to
require that your method satisfy quota? Are you willing to tolerate paradoxes?

• How should the addition of new departments be handled?

• How should growth in department populations be handled?

4. Compare your department’s proposed apportionment to those of other departments. Can
all the departments agree on a method of apportionment? 

Explore Further
5. Apportionment is used in many applications other than politics. The Central City youth club

offers five art classes each semester that are taught by the same teacher. In the preregistration
for the classes, 51 students signed up for painting, 30 for sculpture, and 19 for lapidary. The
table below shows the apportionment of the classes using Hamilton’s method.

Number
of

Employees

673

ApportionmentDepartment
Development

Sales
Service

Production
241

368
173

Number of
students

30

ApportionmentCourse
Painting

Lapidary
Sculpture

51

19

Ideal quota Course average
2.55
1.50
0.95

3
1
1

17
19
19
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When the courses began, the actual enrollments in the three classes changed to 52
students in painting, 33 in sculpture, and 15 in lapidary. The table below shows the new
apportionment using Hamilton’s method.

Compare and analyze the results of the two apportionments and describe in your own
words the problem that occurs with the change in enrollment. How serious a problem do
you think this is?

6. Cygnet College is a small college with three divisions. Each division has the enrollment
shown in the table below. 

• How would you apportion the five seats in the student senate to the three
divisions?

• If the student numbers changed to 555, 465, and 480 next year, how would you
apportion the five seats?

• Will any division gain students but lose representation due to the change in
population?

Research 
7. In the election of 1876, Rutherford B. Hayes was elected president. What role did the

electoral college play in his election? How do you think this affected discussions about
apportionment?

8. Sometimes the paradoxes discussed in this activity are referred to as the failure to satisfy
house monotonicity or quota monotonicity. In a dictionary, find a definition for
monotone that you think applies to this situation. Research what is meant by house
monotonicity or quota monotonicity.

Number of
students

33

ApportionmentCourse
Painting

Lapidary
Sculpture

52

15

Ideal quota Course average
2.60
1.65
0.75

2
2
1

26
16.5
15

Enrollment

435

Division
Arts

Business
Total

Science
690

375
1500
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TEACHER’S NOTES
In this activity, students continue their exploration of the undesirable properties of the
apportionment methods they have studied. Balinski and Young proved in the 1970s that
any possible apportionment method, whether known or not yet discovered, must in fact
produce some unpleasant result in some instances. This is an example of an impossibility
theorem.

For the Consider This section of this activity, divide the class into groups representing
the four departments of SuperTec. If you have enough students, you might want to have
two groups represent each department. After each group has formulated a proposal, have
the groups present their proposals to the class. Hold a class discussion in which the class,
representing the employees of the plant, agrees on an apportionment method.

Answers

Consider This . . .
1. Divisor methods avoid the Alabama paradox because as the House size increases, the

divisor, d, must be made smaller. As the divisor decreases, the quotient of each state (the
representative population of the state divided by the divisor) increases. Each time this
quotient passes an integer value in Jefferson’s method or a specific decimal value in
Webster’s method, its state gets one more seat. Since no state’s quotient can possibly get
smaller, no state will ever lose a seat.

2. Congress found the possibility of paradoxes occurring more disturbing than an occasional
violation of quota.

3. Answers will vary.

4. Answers will vary.

Explore Further
5. Answers will vary. The problem here is that the quota increased for painting, but its

apportionment decreased. The situation in this problem illustrates the failure of quota
monotonicity, which is referred to in Question 8. This is a problem in any reasonable
apportionment method. It occurs when a group’s quota increases but its apportionment
decreases. This situation is different from the Alabama paradox, which is sometimes
referred to as the failure of house monotonicity.
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6. The tables show the apportionments for both populations.

Each method except Jefferson’s results in the science division losing a seat even though its
size has increased. Students may have varying opinions as to the fairness of this.

Research 
7. In the 1876 presidential election, Samuel J. Tilden received 4,300,590 popular votes to

Rutherford B. Hayes’s 4,036,298 votes. But the electoral college, which is influenced by
the apportionment of the House, elected Hayes. 

8. A set of values is monotonic if the values in the set increase or decrease in order. If
monotonic is used to refer to sets, it means that each set contains the preceding set.

If an apportionment method satisfies house monotonicity, then it is free of the Alabama
paradox. As the size of the house increases, each apportionment contains the preceding
apportionments. 

If an apportionment satisfies quota monotonicity, then whenever a state’s quota increases
or decreases, its apportionment will increase or decrease in the same way.

Enrollment

435

Division
Arts

Business
Total

Science
690

375
1500

Hamilton Jefferson Webster Adams
2
2
1

3 2 2
221

1 1 1

Enrollment

465

Division
Arts

Business
Total

Science
555

480
1500

Hamilton Jefferson Webster Adams
2
1
2

2 2 2
111

2 2 2
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JOSEPH A. HILL’S METHOD
FOR APPORTIONMENT
Activity 15

From 1850 to 1900, the
population of the United States
grew dramatically from 23
million to 75 million, an
increase of more than 200%!
Fourteen new states were
added, and population shifted
from the east to the west and
from the country to the cities.
In response to the growth in
population, the size of the
House of Representatives grew
from 234 to 386 members.
During this period of growth,
several events turned the
discussion over apportionment
into a hot debate. 

Politicians discovered that Hamilton’s method was subject to some of the paradoxes
you explored in Activity 14. Although Hamilton’s method, enacted in 1852 as Vinton’s
Act, was the law for apportionment, it wasn’t always strictly followed. In the 1860s and
1870s, no real method was used. The results of Hamilton’s method were changed to
satisfy states who felt they didn’t have enough representatives. In the 1860s, 233 seats
were apportioned using Hamilton’s method, but then eight more seats were arbitrarily
allotted to northern states. Similarly, in the 1870s the first apportionment resulted in 283
seats. The House size of 283 was chosen because at that size Hamilton’s and Webster’s
methods led to the same apportionment. But several months later, nine additional seats
were allotted. The new apportionment of 292 seats agreed with neither Hamilton’s nor
Webster’s method.

Other things indicated that all was not well with apportionment. In the 1876
presidential election, Samuel J. Tilden received 4,300,590 popular votes to Rutherford B.
Hayes’s 4,036,298 votes. But the electoral college, which is influenced by the
apportionment of the House, elected Hayes. 

When the results of the 1880 census were reported to the House, the apportionment



debates became more intense. It had become clear that Hamilton’s method was plagued
by paradox. Walter F. Willcox, a young professor in the philosophy department at
Cornell, studied examples as well as congressional debates and concluded that Webster’s
method was the correct approach to apportionment. As a result, Webster’s method was
used in 1910 to apportion a House with 433 seats, together with a provision that the
territories of Arizona and New Mexico receive one seat each should they be admitted as
states before the next census. The number 433 was chosen because it was the lowest
number that prevented any state from losing a seat. 

In the meantime, a new method had been proposed, and the debate continued.
Joseph A. Hill, chief statistician of the Division of Revision and Results, Bureau of the
Census, argued that what we should care about in creating apportionment in the House is
whether any state is better represented than any other state. By this he meant that the
ratio of the population per representative should be almost the same for each state. He
thought that the way to tell whether this was achieved was to consider how many times
greater one ratio is than another and measure the difference on a percentage basis. 

Hill’s method for apportionment works this way:

Choose the size of the House to be apportioned. Give to each state a number of seats
so that no transfer of any one seat can reduce the percentage difference in
representation between those states.

This method doesn’t yield a recipe for apportionment, but by using mathematics
Edward V. Huntington created a method for apportioning the House following Hill’s
principle. 

Hill’s method works in a way similar to the other divisor methods. Like the other
divisor methods, you need to find a divisor that will provide you with the desired House
size. The difference is that, instead of using a rounding rule, you compare the quotient, qi,
obtained by dividing a state’s population, pi, by the divisor, d, to the geometric mean of

and      + 1. (The brackets indicate the greatest integer function.) For example, if qi is
15.542, look at , which is approximately 15.492. Since 15.542 > 15.492 (the
geometric mean), the state is allotted 16 representatives. 

Consider This . . .
1. You can use Hill’s method to apportion the Dale County student council with 26

members. First, you need to divide each school’s population by the chosen divisor. Then
compare this quotient to the geometric mean of     and     + 1. If the quotient is greater
than the geometric mean, then assign     + 1 representatives to the school. Otherwise, the
school receives      representatives. Use a divisor of 960 to compute the quotients in the
table below and complete the apportionment of the 26-seat Dale County student council
using Hill’s method.
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qi
d

15 • 16

qi
d

qi
d

qi
dqi

dqi
d
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2. Compare the results of your student council apportionment using Hill’s method to the results
obtained using other apportionment methods. Which method seems fairest and why?

Explore Further
3. Mountain County is forming an all-county handball team to participate in the upcoming

national tournament. The handball committee has decided to apportion athletes to the all-
county handball team from each handball association in the county using Hill’s method.
Complete the table to determine the apportionment for an all-county handball team with
13 players.

Student
population

7179

Geometric meanSchool
North High

Valley High
South High

9061

5259

Quotient
(d = 960)

Number of
representatives

9.439 9 • 10 = 9.487 9

Meadow High
Ridge High
Total

3319
1182

26,000

Hamilton's
method

Webster's
methodSchool

North High

Valley High
South High

Jefferson's
method

Adams's
method

10 9

Meadow High
Ridge High

7
5
3
1

8
5
3
1

9
7

2
3
5

9
7

1
4
5

Number of
players

332

Geometric meanClub
Rainier

Whitney
Adams

501

53

Quotient
(d = 100)

Number of
athletes

St. Helens
Hood
Shasta

15
58

1005

Ideal quota

Total

46
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4. Does the apportionment of the handball players satisfy quota? What do you notice about
the distribution of players in the various counties that might account for this result? 

5. Use Hill’s method to apportion SuperTec’s board for a board of trustees with six members.

6. Are you satisfied with the results of the apportionment of SuperTec’s Board? Why or why not?

7. Compare the results of the SuperTec apportionment using Hill’s method to the results
using the methods shown in the table below. Which method would you recommend?

Calculator Exploration
8. A programmable calculator or a computer spreadsheet program can greatly simplify the

calculations for Hill’s method. Develop a calculator routine for Hill’s method and describe
it, or use the program your teacher provides.

9. Use a calculator program or a computer spreadsheet program to find out how many seats
have to be added to the student council before Ridge High receives a second seat. 

Number of
employees

673

Geometric meanDepartment
Development

Sales
Production

241

368

Quotient
(d = 265)

Number of
representatives

Service
Total 1455

173

Hamilton's
method

Webster's
methodDepartment

Development

Sales
Production

Jefferson's
method

Adams's
method

1 1

Service

3
1
1

3
1
1

1
2

1
2

2
2

1
1



A C T I V I T Y  1 5 J O S E P H  A  H I L L ’ S  M E T H O D  F O R  A P P O R T I O N M E N T

© 1 9 9 6  b y  K e y  C u r r i c u l u m  P r e s s  • D o  n o t  d u p l i c a t e  w i t h o u t  p e r m i s s i o n 119

10. Use a calculator program or a computer spreadsheet program to apportion 23 members to
the Broad County hospital board using Hill’s method and Webster’s method. 

How do the results using Hill’s method compare to the results using Webster’s method?
Which method do you think is fairer?

Research 
11. Do some research and find out how the geometric mean between two numbers can be

represented geometrically.

12. Experiment with pairs of consecutive positive integers and make some conjectures
relating the arithmetic mean and geometric mean of the two numbers. Show that your
conjectures are true using geometry.

13. What is the current status of the apportionment debate? You can find interesting
information about voting and apportionment on the Internet as well as at your local
library. It might also be helpful to write to your representative in the House.

Number of
patient beds

Webster
apportionmentHospital

Littlefield Hospital

Sunshine Hospital

Grand Hospital

Hill
apportionment

Rose Hospital

1518
1305

865
Mercy Hospital

Brookfield Hospital

Total

499
296
210



TEACHER’S NOTES
This activity introduces the method that is used today to apportion the House of
Representatives. It was first described by Joseph A. Hill and was further developed by
Edward V. Huntington. This method is also known as the method of equal proportions.
Congress adopted this method in 1940 and has used it ever since.

Surprisingly, this method does not satisfy quota. This problem has not caused much
controversy yet, because each of the four times that the equal proportions method has
been used the specific apportionment obtained has, by chance, satisfied quota. There is
no guarantee that this will continue to happen in the future. When the method gives an
apportionment that doesn’t satisfy quota, the apportionment debate may heat up again!

Be sure students understand how to compute the geometric mean and the arithmetic
mean.

A calculator program for Hill’s method follows Activity 18.

Consider This . . .
1.

2. Answers will vary.

Explore Further
3.

*A team with a quotient less than 1 automatically gets 1 representative.
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Student
population

7179

Geometric meanSchool
North High

Valley High
South High

9061

5259

Quotient
(d = 960)

Number of
representatives

9.439 9 • 10 = 9.487 9

Meadow High
Ridge High
Total

3319
1182

26,000
1.231
3.457
5.478
7.478 7 • 8 = 7.483

5 • 6 = 5.477
3 • 4 = 3.464
1 • 2 = 1.414

7

1
3
6

26

Number of
players

332

Geometric meanClub
Rainier

Whitney
Adams

501

53

Quotient
(d = 100)

Number of
athletes

St. Helens
Hood
Shasta

15
58

1005

Ideal quota

Total

46

5.274
3.495
0.558
0.484
0.158
0.611

5 6.4615 • 6 = 5.477
3 • 4 = 3.464

0 • 1 = 0*
0 • 1 = 0*

0 • 1 = 0*
0 • 1 = 0*

4

1
1
1
1

4.295

0.750
0.194
0.595
0.686

13



4. The apportionment of handball players using Hill’s method does not satisfy quota. When
there are many small constituencies with a few large constituencies, quota will sometimes
be violated since the smaller groups must be assigned at least one member.

5.

6. Answers will vary.

7. In this case, Hill’s method gives the same apportionment as Webster’s and Jefferson’s
methods. Answers will vary.

Calculator Exploration
8. Answers will vary. 

9. Six seats have to be added before Ridge High gets a second seat. 

10.

In this particular case, Hill’s method seems to favor the smaller hospitals. In general, in
comparing Hill’s method and Webster’s method, the former will tend to favor the smaller
units.
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Number of
employees

673

Geometric meanDepartment
Development

Sales
Production

241

368

Quotient
(d = 265)

Number of
representatives

Service
Total 1455

173

0.909
2.540
1.389
0.653

10 • 1 = 0
2 • 3 = 2,449

0 • 1 = 0*
1 • 2 = 1.414

3

1
1

6

Number of
patient beds

Webster
apportionment

(d = 200)Hospital

Littlefield Hospital

Sunshine Hospital

Grand Hospital

Hill
apportionment

(d = 203)

Rose Hospital

1518
1305

865
Mercy Hospital

Brookfield Hospital

Total

499
296
210

4693

7 8
6
4

7
4

3 2
2
1

23

1
1

23
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Research 

11. In the diagram at right, x is the geometric mean between a and b
.

12. The arithmetic mean is always greater than or equal to the geometric mean. In the
diagram, the dashed line represents the length of the arithmetic mean. The radius of the
circle is the arithmetic mean because the sum of a and b is the diameter. Dividing this
sum by 2 gives you the radius. The altitude in the right triangle represents the geometric
mean. The diagram shows that the geometric mean can be no longer than the radius of
the circle.

13. Help your students find the addresses of their representatives. These are often found in
local phone books, and some local newspapers publish them on a regular basis. Many
representatives also have an e-mail address that can be found by searching on the Internet
using the keywords “House of Representatives.” To find more information about the
ongoing apportionment debate, students can search the Internet using keywords such as
“apportionment” and “voting reform.” 

arithmetic mean

a b

geometric mean

x

a b
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CHOOSING A METHOD:
MATHEMATICS OR
POLITICS?
Activity 16

Joseph Hill’s method was
championed by Edward V.
Huntington, who was a classmate
of Hill at Harvard University.
Huntington was a professor of
mechanics and mathematics at
Harvard, and in 1921 he learned
about Hill’s method to find
apportionments. He renamed
Hill’s method the method of
equal proportions and from then
on considered Hill’s method to be
his own invention.

Huntington argued strongly
for the adoption of Hill’s method,
while Walter Willcox argued
equally strongly for the adoption
of Webster’s method. A panel of four mathematicians was called in to review the problem,
and to Huntington’s delight they affirmed that Hill’s method was the preferred method. 

The method of [Hill] is preferred by the committee because it satisfies the [relative
difference] test . . . when applied either to sizes of congressional districts or to
numbers of Representatives per person, and because it occupies mathematically a
neutral position with respect to emphasis on larger and smaller States.1

Several factors led to the adoption of Hill’s method. The House was never apportioned
based on the 1920 census, because the new apportionment using Webster’s method would
have resulted in a huge loss of seats for rural areas. Congress was unable to agree on an
apportionment and decided to disregard the 1920 census results, using the justification
that during the war many people had temporarily left farms to seek work in cities and

The debate over Hill’s and Webster’s methods changed apportionment from a
mathematical problem to a political struggle in Congress.
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that, furthermore, rural areas had been grossly undercounted because the census had
been taken in the middle of an unusually severe winter.

The failure to apportion Congress in the 1920s was in direct violation of the
Constitution and created a great deal of uproar. People worried that, since the 1930
census would show an even greater loss of population in rural areas, reapportionment
would be even more difficult. In response to this fear, Congress passed a bill in the
summer of 1929 that required the president to send to Congress the representative
populations of the states acquired from the census. Along with those populations, the
president would send apportionments using three different methods: the method used
after the previous census, the method of Webster, and the method of Hill. Once Congress
received this information from the president, it would have a limited time period in which
to reapportion itself. If it failed to do so, it would automatically be reapportioned using
the method used after the previous census.

In 1930, the methods of Webster and Hill gave the same apportionment, leaving no
grounds for argument. In 1940, the methods gave the same apportionment except for two
states, Arkansas and Michigan. 

The two apportionments changed the question of which method to use from a
mathematical problem to a political problem. Arkansas was a safe Democratic state.
Michigan tended to be Republican. A representative from Arkansas proposed an act for
apportionment using Hill’s method. When it came to a vote, every Democrat except those
from Michigan voted for it. All the Republicans voted against it. The Senate held hearings
and tried unsuccessfully to determine which method was unbiased. They recognized that
every method of apportionment is arbitrary to some extent, and the decision became a
partisan one. President Franklin D. Roosevelt signed Public Law 291 in November 1941,
designating Hill’s method for apportionment. Since then, it has been used to apportion
every Congress.

Some political analysts believe that Webster’s method is the fairest. There is no
method that avoids the population paradox and always stays within quota. All the divisor
methods avoid the Alabama paradox, and Webster’s method is the divisor method that
stays closest to quota. Statistically, under the present conditions in the United States, you
can expect Webster’s method to violate quota about 1 time out of every 1600
apportionments. That amounts to once every 16,000 years! 

Hill’s method violates quota more often than Webster’s method, and it tends to favor
small states. Webster’s method seems to be more evenhanded in its treatment of large and
small states.

Population
Webster

apportionmentState
Arkansas

U.S. total
Michigan

Hill
apportionment Quota

7 6
17

435

1,949,387
18

435

6.473
5,256,106

131,006,184
17.453

435
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Consider This . . .
1. What factors do you consider most important in deciding on an apportionment method?

2. Is there one apportionment method that is best in all circumstances?

3. Do you think a group like the U.S. House of Representatives can apportion itself fairly?
Why or why not?

Research 
4. Find out how large your county is, and design a countywide student council in which all

the high schools are represented fairly. Decide how large the student council should be
and what method should be used for apportionment. Using this method, apportion the
student council and make a chart showing the apportionment along with the ideal quota
for each school.

After you have decided on the size and the method for creating the student council,
decide how the representatives to the council are to be elected. Should each school have
the same election process? What types of ballots will you use? How will you process the
ballots to choose the schools’ representatives? Should the methods used by the small and
large schools be the same? What other questions will you want to answer in the process of
choosing an election procedure?

Prepare a presentation of your planned student council for your class. Include
explanations of why you chose the methods you did.
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TEACHER’S NOTES
The only permanent apportionment legislation is the act of 1929, which forces Congress
to reapportion itself or be automatically reapportioned using the method that was used
following the previous census. Arthur Vandenberg, the author of the act, explained in
presenting it to the Senate:

To identify any one method in this permanent act—whether the method of major
fractions or equal proportions—would be to assume that science itself has traversed
the subject with finality. Science is not thus static. . . . The last word by no means has
been spoken. Scientists themselves will be among the first to recognize this fact, and,
like the National Academy, scrupulously confess themselves limited to “the present
state of knowledge.” A permanent ministerial apportionment act should be susceptible
of accommodation to the progressive state of knowledge.2

In the Consider This section, encourage students to voice their opinions about
whether there is a “best” method. It may help them to consider which of the flaws in the
methods is most disturbing and therefore to be avoided. Some students may be more
disturbed by the violation of quota, and others by the paradoxes.

In his 1979 article, Jonathan Still suggests a moral to the question of the population
paradox, which plagues many of the methods. He suggests that such paradoxes are
curiosities and nothing more: 

The state populations are what they are; they define the apportionment problem
which actually has to be solved. What the solution might be to another, hypothetical
problem involving other, hypothetical populations is simply irrelevant. Changing the
state populations changes the problem. In the final analysis, all of the various
population paradoxes come down to nothing more than the observation that different
apportionment problems will, in general, have different solutions. That is not
particularly surprising.3

The above quote could lead to some interesting discussions with older students.

Answers
1–4.  Answers will vary.
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Reference Notes
1. G. A. Bliss, E. W. Brown, L. P. Eisenhart, and Raymond Pearl. “Report to the President of

the National Academy of Sciences,” February 9, 1929. In House, Congressional Record,
70th Congress, 2nd Session (1929), 70: 4966–4967. Also in House, Committee of the
Census, Apportionment of Representatives Hearings, 76th Congress, 3rd Session (February
27, 28, 29 and March 1, 5, 1940).

2. Senate, Congressional Record, 71st Congress, 1st Session (1929), 71: 108. From speech of
Arthur H. Vandenberg of Michigan, April 18, 1929.

3. Still (1979).





THE QUOTA METHOD FOR
APPORTIONMENT
Activity 17

In the last few activities, you
discovered that all of the
apportionment methods that
have been proposed for the
House of Representatives are
flawed. The divisor methods,
such as the methods of
Jefferson, Webster, Adams, and
Hill, sometimes fail to satisfy
quota. Hamilton’s method,
which is not a divisor method,
does satisfy quota but is subject
to several paradoxes. This
leaves politicians in the position
of needing to compromise and
accept a less than perfect
solution. 

When people are stuck with
a problem such as this, they
often find it helpful to take a different approach. Michael L. Balinski and H. Peyton Young
did just that when they devised an ingenious method called the Quota method for
apportionment. Having proposed the method, they proved that

the Quota method is the unique apportionment method that always satisfies quota and
avoids the Alabama paradox.1

The Quota method works as follows. First choose the size of the House, s. Then start
with a House with no seats and increase the size of the House by one seat at a time until it
is full. Do this in rounds. In each round, the population of each state pi is divided by its
present number of seats plus one (ai + 1). The additional seat is then assigned to an
eligible state with the largest value of          . (A state is eligible if giving it another seat
would not lead to violating the upper quota with the new House size.)

The students of Broad County and Dale County decided to put their heads together
and try the Quota method to apportion the Dale County student council.
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The quota method is the mathematical approach to apportionment.

pi
(ai + 1)



The table below gives the student populations of the schools in Dale County. 

In the first round, each school has no seats, so (ai + 1) = 1 for all the schools.
Therefore, in this round,          = pi for each school, so North High, with the largest
population, gets the first seat. This seat is entered in the table in the column labeled
Round 1. In each round, check to see if the school with the largest value of   
is eligible for a seat. To do this, compute the ideal quota of each school for that council
size. This computation has been done for you and is summarized in the table below. 

Upper Quota for Each School at House Sizes from 1 to 26.

In the first round, North High is eligible for a seat. In the second round, compute and
compare          for each school, namely,                                                  . In this round,
South School has the largest value and is eligible, so it receives a seat. The table below
shows the apportionment at the end of Round 2.
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1School
North High

Valley High
South High

Meadow High
Ridge High

1

Round
2 3 4 5 6 7 8 9 10 11 12 13

1
1
1
1

1
1
1
1
1

2
1
1
1
1

2
2
1
1
1

2
2
2
1
1

3
2
2
1
1

3
2
2
1
1

3
3
2
1
1

4
3
2
1
1

4
3
3
1
1

4
4
3
2
1

5
4
3
2
1

5
4
3
2
1

14School
North High

Valley High
South High

Meadow High
Ridge High

6

Round
15 16 17 18 19 20 21 22 23 24 25 26

5
4
2
1

5
4
3
2
1

6
5
4
3
1

6
5
4
3
1

7
5
4
3
1

7
6
4
3
1

7
6
5
3
1

8
6
5
3
1

8
7
5
3
2

9
7
5
3
2

9
7
5
4
2

9
7
6
4
2

10
8
6
4
2

Student
populationSchool

North High

Valley High
South High

Ideal
quota

1182
Meadow High
Ridge High

7.179
5.259
3.319
1.182

26Total 26,000

9061
7179
5259
3319

9.061

pi
(ai + 1)

pi
(ai + 1)

pi
(ai + 1)

9061
2 , 7179

1 , 5259
1 , 3319

1 , 1182
1

and



Consider This . . .
1. Use the Quota method to finish the apportionment for Dale County. Be sure to check the

ideal quota at each level to see if a school is eligible to receive a seat. If a school isn’t
eligible, assign the seat to the eligible school with the next largest value of          .

2. Does the Quota method seem fair? Why or why not?

3. How do the results of this method compare to the results of the other methods you have
tried? Which method do you prefer? 

The Quota method was invented in an attempt to create an apportionment method that always
satisfies quota and is free of paradoxes. Recall, that the divisor methods do not always satisfy quota
and that Hamilton’s method is not free from paradox. Another concern is bias. An apportionment
method should not be biased toward either large or small states. Although Balinski and Young realized
that it is impossible to satisfy all of these criteria, they believed it is more important to avoid
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School
North High

Valley High
South High

Meadow High
Ridge High

Hamilton's
method

Jefferson's
method

Webster's
method

Adams's
method

9
7
5
4
1

10
7
5
3
1

9
8
5
3
1

9
7
5
3
2

1School
North High

Valley High
South High

Meadow High
Ridge High

1

Round
2 3 4 5 6 7 8 9 10 11 12 13

1
0
0
0

1
0
0
0
0
1 2Total seats

14School
North High

Valley High
South High

Meadow High
Ridge High

Round
15 16 17 18 19 20 21 22 23 24 25 26

Total seats

pi
(ai + 1)
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paradoxes than to always satisfy quota.

Explore Further
4. Use the Quota method to apportion the Mountain County handball team with 13 players.

5. Use the Quota method to reapportion the Mountain County handball team when six new
players move in. What do you notice? Is this fair?

6. Use the Quota method to apportion SuperTec’s board for a board of trustees with six
members.

7. What problems did you find with the SuperTec apportionment? How can you modify the
Quota method to fix these problems?

1
Handball

Association
Rainier

Whitney
Adams

St. Helens
Total

2 3 4 5 6 7 8 9 10 11 12 13
501
400
156
149

1206

Votes

1
Handball

Association
Rainier

Whitney
Adams

St. Helens
Total

2 3 4 5
501
400
156
149

1206

Votes

1
Handball

Association
Rainier

Whitney
Adams

St. Helens
Total

2 3 4 5 6 7 8 9 10 11 12 13
501
394
156
149

1200

Votes
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8. Compare the results of the SuperTec apportionment using the Quota method to the
results using the methods shown in the table below. Which method would you
recommend?

Calculator Exploration
Questions 9–11 refer to the apportionment of Dale County, which you explored above.
Develop a calculator routine for the Quota method, or use the program provided by your
teacher.

9. How many seats will each school get if the size of the student council in Dale County is
increased to 27?

10. If only the size of the council is increased, at what size will Ridge High get an additional
seat? Do you think this is fair? 

11. Design a variation of the Quota method that will fix the problems you discovered in
Question 7.

Reference Note
1. Balinski and Young (1975)

HamiltonDepartment
Development

Sales
Production

Jefferson
2

Service

Webster Adams

2
1
1

1
3
1
1

1
3
1
1

1
2
2
1



TEACHER’S NOTES
This activity introduces the Quota method, which at first glance appears to offer a
solution to the problem of apportionment. However, when students investigate more
closely in the Explore Further section of the activity, they discover that this method has
problems of its own. It is subject to the population paradox, meaning that changes in
population are not always reflected in the number of seats allocated. 

This activity is more rewarding (and less frustrating) for students if they can use
programmable calculators. Encourage your students to figure out a calculator routine for
computing the apportionment that will aid them in record keeping as well. If they need
suggestions, you can suggest the following routine.

Enter the populations of the schools, pi, in list 1 and the number of seats each school
has, ai, in list 2. In list 3, enter the quotient             . This gives the value of           .
Students can compare the values in this list and decide which school receives the seat in
the given round. They should record their results in their table and add 1 to the
corresponding school in list 2. This process can be repeated until the council reaches the
desired size. However, before giving another seat to any group, students need to check
that the ideal quota for that size council will not be violated. A table of the ideal quotas
for each council size is provided for the questions regarding Dale County. For the other
questions, students may find it helpful to calculate the ideal quota for each school for
each round in list 4.

A calculator program for the Quota method follows Activity 18.
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North
South

pi
(ai + 1)



Answers

Consider This . . .
1. Note that in going from a council size of 10 to 11, North High has the largest value of    

but is not eligible to receive the seat, so South High receives the seat.

2. Answers will vary.

3. Answers will vary.

Explore Further
4.

A C T I V I T Y  1 7 T H E  Q U O T A  M E T H O D  F O R  A P P O R T I O N M E N T

© 1 9 9 6  b y  K e y  C u r r i c u l u m  P r e s s  • D o  n o t  d u p l i c a t e  w i t h o u t  p e r m i s s i o n 135

1School
North High

Valley High
South High

Meadow High
Ridge High

1

Round
2 3 4 5 6 7 8 9 10 11 12 13

1
0
0
0

1
0
0
0
0

1
1
1
0
0

2
1
1
0
0

2
2
1
0
0

2
2
1
1
0

3
2
1
1
0

3
2
2
1
0

3
3
2
1
0

4
3
2
1
0

4
4
2
1
0

5
4
2
1
0

5
4
3
1
0

Total seats 1 2 3 4 5 6 7 138 129 1110

14School
North High

Valley High
South High

Meadow High
Ridge High

6

Round
15 16 17 18 19 20 21 22 23 24 25 26

4
3
2
0

5
4
3
2
0

6
5
3
2
0

6
5
4
2
0

7
5
4
2
0

7
6
4
2
0

7
6
4
2
1

8
6
4
2
1

8
6
4
3
1

8
6
5
3
1

8
7
5
3
1

9
7
5
3
1

10
7
5
3
1

Total seats 14 15 16 17 18 19 20 2621 2522 2423

1
Handball

association
Rainier

Whitney
Adams

St. Helens
Total

1

2 3 4 5 6 7 8 9 10 11 12 13

1
0
0
2

1
0
0
0
1

2
1
0
0
3

2
2
0
0
4

3
2
0
0
5

3
2
1
0
6

3
2
1
1
7

3
3
1
1
8

4
3
1
1
9

5
3
1
1

10

5
4
1
1

11

5
5
1
1

12

6
5
1
1

13

Votes
501

149
156
394

1200

pi
(ai + 1)
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5. In going from a team size of 11 to 12 players, the Rainier handball association has the
largest value but isn’t eligible. The Adams handball association isn’t eligible either, so the
Whitney handball association gets a second player.

This example demonstrates the population paradox. Even though the Adams handball
association gained players relative to all the other clubs (its vote percentage increased
from 32.8% to 33.2%), it lost a seat to the Whitney handball association!

6.

7. Answers will vary. Some students may think it is unfair that the service department is not
represented on the board.

8. Answers will vary.

Calculator Exploration
9. South High will gain a seat; no other school is affected.

10. Ridge High will get an additional seat when the council contains 42 seats. The
apportionment will be 15, 12, 8, 5, 2. The Quota method, like Jefferson’s method, seems
to favor the larger associations. 

11. Answers will vary. Students may propose several variations of the Quota method. If they
are stuck, you might suggest other tests to see which school should receive a seat in each
round. 

One variation that still meets the criterion of quota and avoids the Alabama paradox is to
assign the seat in each round to the school with the greatest difference between the ideal
quota, qi, in that round and the present number of seats, ai. To use this variation, you

1
Handball

association
Rainier

Whitney
Adams

St. Helens
Total

1

2 3 4 5 6 7 8 9 10 11 12 13

1
0
0
2

1
0
0
0
1

2
1
0
0
3

2
2
0
0
4

3
2
0
0
5

3
2
1
0
6

3
2
1
1
7

3
3
1
1
8

4
3
1
1
9

5
3
1
1

10

5
4
1
1

11

5
4
2
1

12

6
4
2
1

13

Votes
501

149
156
400

1206

Number of
employeesDepartment

Development

Sales
Production

Apportionment
241

Service

673
368
173

1455Total

1
3
2
0
6



would evaluate qi – ai in each round.

Another variation is to determine the largest divisor d so that for all eligible parties 
�INT                 . In other words, the additional seat at each level would be allocated to
that eligible party whose number of votes xi divided by d results in a decimal of 0.5 or
larger. This variation is known as the Quota-Webster method.
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xi
d







+ 0.5 = 1
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PROPORTIONAL
REPRESENTATION
Activity 18

The United States has a federal
system in which geographical units
are represented by single-member
constituencies. This system
developed in response to fairly
homogeneous regions. However,
over time these regions have
become progressively less
homogeneous, which may raise
questions regarding the methods
by which they are represented. 

Many nations use proportional
representation (PR) systems of
government, in which citizens are
represented by political parties
rather than by geographical
regions. These systems developed
because federal single-member
systems make it difficult or
impossible for small parties to be
represented.

A country’s proportional
representation system is called pure if each voter casts a single vote for a party or party
list and the representatives are then apportioned by the party itself. Only a few countries
practice pure proportional representation. The Israeli Knesset and the Netherlands’ Second
Chamber are both pure proportional representation bodies. 

Many countries use a proportional representation system in combination with other
methods. A country might be divided into multimember electoral districts. In these
countries, representatives are apportioned geographically; then, within the regions,
proportional representation is used for apportionment. In other countries, pure
proportional representation is used in one house of the representative branch. The
different combinations of proportional representation and geographical representation lead
to the use of different methods of apportionment.

Many countries in the world use a proportional representation system.



The Israeli Knesset is elected through list proportional representation. The Knesset is a
single chamber with 120 members. Every four years, when elections are held, each party
presents the voters with its platform and a list of its candidates for the Knesset. Each party
lists the candidates in order of importance by their criteria, and each list can have up to
120 candidates. Each voter then votes for a party, not a candidate. Once the results of the
election are known, seats are apportioned to each party using Jefferson’s method, which is
referred to in much of the world as d’Hondt’s method. In this way, the country is
represented as a single constituency with 120 representatives. 

List proportional representation might work in a small town as follows. The town of
Midlands needs to elect two representatives to its countywide residents’ association. Two
opposing parties have emerged: the Conservative Party and the Liberal Party. The major
issue in town politics is change. The Conservative Party members want change to occur
very slowly, if at all. The Liberal Party members want a number of changes to happen
quickly. They want to improve the city’s water supply and add speed bumps to some
roadways, and the most radical members of the party want to construct a central heating
system for the town that would supply heat to all the homes. 

There are 23 voters in the Midlands residents’ association, 13 Conservatives and 10
Liberals. The Conservative candidates are Winston and Nadia, with Winston the more
conservative of the two. The Liberal candidates are Theo and Rudy, with Rudy the more
radical of the two. In a vote for the countywide residents’ association, using ordinal
ballots, the following preference schedules emerged: 

If two candidates were elected using Borda’s method, Winston and Nadia would be
declared the winners. In this case, the ten liberal voters would not be represented at all,
even though they represent 43% of the residents’ association.

To use list proportional representation, each residents’ association member would vote
for a party. If each member voted for the party he or she belonged to, the Conservatives
would receive                  of the vote and would be entitled to that percentage of the
available seats, namely, 1.13 seats. Similarly, the Liberals would draw                  of the
vote and would be entitled to 0.87 seat. The residents’ association would have to agree on
an apportionment method, but it seems reasonable in this case that each party would
receive one seat.

The problem that might occur with list proportional representation is that the voters’
preference schedules are completely ignored. Which candidate fills the seat is up to the
party. The parties could choose to be represented by their most radical candidates,
namely, Winston and Rudy. This could increase polarization and lead to conflict. In any
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Conservative

Winston

Theo
Nadia

Liberal

Rudy

7 6 6 4

Winston

Winston

Winston

Nadia

Nadia NadiaTheo

Theo
Theo

Rudy

Rudy
Rudy

13
23

= 56.5%
10
23

= 43.5%
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case, it would not be a good representation of the wishes of the society or the constituency
as a whole, since all the Conservatives ranked Rudy last and all the Liberals ranked
Winston last. Another problem with using list proportional representation is that
appointed candidates are directly accountable not to the electorate but only to their
respective parties. This could encourage blind allegiance and conformity to the party
ideology in order to secure an electable place on the party list. 

Consider This . . .
The Friends of the Arts of Broad County elect an Arts Commission, consisting of 18
people, once every three years. The members of the Arts Commission are actively involved
in allotting money that the group raises for scholarships for young artists and for art
classes that are made available to the public in Broad County. Over the past few years, the
Friends of the Arts have split into four very distinct groups along the lines of the type of
art they prefer most. The groups that have developed are the dancers, the musicians, the
painters, and the sculptors. In the last election, the Friends of the Arts decided to use
proportional representation to select their commission. The results of the vote are
displayed in the following table.

1. In your group, decide on a method and apportion the Arts Commission.

2. Why did you choose the method you used? Is there a particular benefit to one party in
choosing a specific method?

3. If the painters and sculptors joined together as one group, would they benefit in the
number of votes that they would receive? Investigate.

4. Compare and discuss the different methods your classmates suggested. What advantages
did the various methods offer? 

Number of
votes

278

Party
Dancers

Painters
Musicians

164

172
Sculptors 81
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Explore Further
5. The citizens of Metropolis hold an election every four years to choose a five-member city

judicial board. The citizens fall into three parties: Democrats, Republicans, and
Independents. Use Hamilton’s method to apportion the results of this year’s election and
the last election. Compare the results of the apportionments to the ideal quotas. What do
you notice? 

6. One of the issues that arises in proportional representation systems is the question of how
large a party must be in order to obtain at least one seat. For the U.S. House of
Representatives, this problem is solved in the Constitution, but the solution is not as clear-
cut in countries using proportional representation. In Metropolis, the Socialist Party has
been gaining members. How large do you think the party should be before it is
represented on the five-member judicial board? Describe how you would make this
decision. 

7. A major difference between proportional representation and federal systems is that in
federal systems the number of states remains fairly stable, while in some countries that use
proportional representation the number of parties is constantly subject to change. Some
parties fade away, while new ones form. Too much change in the number and
composition of parties can lead to political instability. Which method of apportionment do
you think would best encourage party stability?

Research
8. Some political activists believe that the time has come to reform the American political

system. Investigate proportional representation in the United States. Under what
circumstances could it be used in the United States? Who advocates it? Who opposes it?
What would be some of the advantages and disadvantages of using a proportional
representation system?

Votes in last
election

69,000

ApportionmentParty
Democrats

Independents
Republicans

43,500

37,500

Ideal quota

Votes in this
year's election

59,000

ApportionmentParty
Democrats

Independents
Republicans

45,000

46,000

Ideal quota
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TEACHER’S NOTES
Proportional representation is particularly well suited for politically heterogeneous
societies. A federal system, in which the winner takes all in each constituency, makes it
very difficult for smaller parties to be represented. 

There is, in fact, an election reform movement in the United States that advocates the
adoption of proportional representation, at least at the local and state levels. Bob Richie,
National Director of the Center for Voting and Democracy, suggests that many Americans
do not vote because they do not feel represented. He points out that in the 1994 elections
to the House of Representatives barely 22% of eligible voters helped elect candidates. In
contrast, 75% of Germany’s eligible voters helped elect candidates using a proportional
representation system in their 1994 elections. Bob Richie states:

Spreading political power, providing voters with more choices and allowing more
segments of society to earn a place at the table of policy-making are all-important
steps to providing greater long-term stability for our democracy.1

The Center for Voting and Democracy can be found on the World Wide Web. The
Center’s mailing address is 6905 Fifth Street NW, Suite 200, Washington DC 20012. 

Your students may enjoy discussing the possibility of voting reform in the United
States. Do they feel represented? Do they think they would feel better represented in a
proportional representation system? Would they be more likely to vote?

Answers

Consider This . . .
1–4. Answers will vary.

Explore Further
5. Votes in last

election

69,000

ApportionmentParty
Democrats

Independents
Republicans

43,500

37,500

Ideal quota

Votes in this
year's election

59,000

ApportionmentParty
Democrats

Independents
Republicans

45,000

46,000

Ideal quota

1.45
2.3
1.25

1.5

1.53
1.97

2
2

2
2
1

1
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The Democrats received more votes but lost a seat. The Republicans received fewer votes
but gained a seat.

6. Answers will vary.

7. Answers will vary. Jefferson’s method favors larger states and therefore larger parties. It
can be shown that it will therefore encourage coalitions of parties, and, in fact, it is the
only method that encourages coalitions and avoids the population paradox.

Research
8. There is information on proportional representation on the World Wide Web. It can be

found by doing searches with key phrases and words such as “proportional
representation,” “election,” “voting,” “democracy,” and “apportionment.”

Reference Note
1. Center for Voting and Democracy
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CALCULATOR PROGRAMS
The calculator programs listed below are for the TI-82 and TI-83 calculators. The
programs for Hamilton’s method and the quota method must be entered separately. The
programs for the divisor methods (Jefferson, Webster, Adams, and Hill) can be entered
separately, or you can enter the divisor program. This program will compute the
apportionment for any of the divisor methods.

Hamilton’s Method
Store the populations in L1 before running the program. The final apportionment
numbers are stored in L2.
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Jefferson’s Method
Store the population data in L1 before running the program. You can use guess-and-check
to find a divisor that will give the correct apportionment.  The final apportionment
numbers will be stored in L2.
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Webster’s Method
Store the population data in L1 before running the program. You can use guess-and-check
to find a divisor that will give the correct apportionment.  The final apportionment
numbers will be stored in L2.
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Adam’s Method
Store the population data in L1 before running the program. You can use guess-and-check
to find a divisor that will give the correct apportionment.  The final apportionment
numbers will be stored in L2.
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Hill’s Method
Store the population data in L1 before running the program. You can use guess-and-check
to find a divisor that will give the correct apportionment.  The final apportionment
numbers will be stored in L2.
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Quota Method
This program will compute the apportionment using the Quota method. Store the
populations in L1 before running the program. The final apportionment numbers will be
stored in L2.
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Divisor Methods
This program will compute the apportionments for all of the divisor methods. If you use
this program, you will not need to use the programs listed above for Jefferson’s, Webster’s,
Adam’s, and Hill’s methods. Store the population data in L1 before running the program.
You can use guess-and-check to find a divisor that will give the correct apportionment.
The final apportionment numbers will be stored in L2.
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